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ABSTRACT
Influencers, from propagandists to sellers, expend vast resources targeting agents who amplify their message through word-of-
mouth communication. While agents differ in network position, they also differ in their bias: Agents may naturally read articles
with a particular slant or buy products from a certain seller. Absent competition, an influencer prefers targeting central agents
and those biased against it. If agents are unbiased, competition leads to influencers targeting more central agents. However, when
agents have heterogeneous biases and competition is intense, the incentive to deter one’s rival dominates. Influencers protect their
base, targeting those with similar beliefs in equilibrium.
JEL Classification: D83, D85, L10

1 Introduction

Strategic influencers, ranging from propagandists to sellers,
expend vast resources targeting individuals, employing tools
such as customized advertisements, sponsored posts, and online
recommendations (Bergemann and Bonatti 2011; Fainmesser
and Galeotti 2015, 2020). Existing technologies allow them to
target recipients at a granular level, increasing direct interaction.
Importantly, their message can be amplified by the peer networks
of those they target. But whom should they target? Many suggest
that it is best to target the most central agents so as to maximize
the diffusion of one’s message (e.g., Coleman et al. 1966; Galeotti
and Goyal 2009; Banerjee et al. 2013, 2019; Beaman et al. 2021).
However, a critical feature of the settings used to support these
results is that there is a single influencer attempting to “seed”
the network, and agents only interact with each other outside of
the seeding event. In reality, agents interact repeatedly not only
with their peers but also with various external sources, some of
whom may be competing with one another. Importantly, agents
are often biased and inclined to interact with external sources that
reinforce their biases.

To understand why bias matters, consider a social network
where users learn about a political event from their peers and
from articles they read while browsing the internet. These users
may be naturally biased in one direction or the other. That is,
when they browse the internet, they will not only see articles
from external news sources that specifically target them but
also articles from like-minded media. Suppose a left-leaning
propagandist targets the users in this social networkwith the goal
of driving the “average” opinion regarding some event toward the
left. Although the propagandist will consider a user’s centrality
in the network, it must also consider the user’s bias. Why?
Because the marginal gain from targeting a user, say, who already
receives persistent impressions from other left-leaning sources
is much lower than the potential gain from targeting a user
who is biased to the right. In other words, targeting users and
displacing attention directed toward sources with a similar slant
is not as beneficial as displacing attention thatwould otherwise be
directed toward opposing sources. Thus, with limited resources,
influencers may need to trade-off between these two features. For
example, should a propagandist use funds to reach across the
aisle or target her base, and how should she balance this decision
with the benefit from targeting central agents? Likewise, sellers
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can benefit from word-of-mouth communication by targeting
influential consumers in the network, but is this irrespective of
the consumers’ bias?

To understand why competition matters, consider that the left-
leaning propagandist’s decision to target specific agents will
depend significantly on the actions of its rival right-leaning
propagandist. When competing for attention, the marginal value
of targeting an agent will likely be tied to how much the right-
leaning propagandist is investing in that same target. Should the
propagandists then pursue the same agents or could that be a
waste of resources? Alternatively, should the propagandists seg-
ment themarket and concentrate their efforts on different agents?

To analyze the effect of bias and competition on influencer target-
ing decisions, I develop a model of belief formation where agents
learn from their neighbors and external sources of information
via a simple DeGroot heuristic. These external sources include
strategic influencers and non-strategic “private sources”. The
influencers push their specific beliefs, whereas the non-strategic
private sources reinforce an agent’s initial belief. Influencers
compete over attention to shape the average belief in the network.
They have a fixed budget and target agents by spending money to
increase the per-period frequency of direct engagement between
themselves and the agent. Crucially, the interaction rate between
an influencer and an agent depends not only on the influencer’s
spending but also on her competitor’s spending. Such a model
is particularly well-suited for analyzing marketing and political
competitions. Consumers and voters are typically biased toward
a specific firm or ideology, and their beliefs are influenced both
by interpersonal communication and targeted externalmessaging
(Huckfeldt et al. 2004; Trusov et al. 2009; Iyengar et al. 2011).
Furthermore, firms and political groups spend massive amounts
on advertising and data brokers to target advertisements and
capture the attention of consumers and voters. In 2021, US
organizations spent almost $22 billion on audience data, to go
along with $221 billion in digital advertising.1 In the 2024 election
cycle, digital advertising spending is expected to reach $3.5 billion
dollars.2

I analyze settings with a single influencer and two competing
influencers. In the single-influencer setting, the influencer dis-
counts an agent’s centrality by their initial, persistent belief.
Targeting agents biased in the influencer’s favor is not valuable
because one ismerely displacing attention directed toward private
sources already sending similar messages. Thus, the influencer
favors agents biased in the opposite direction. In the competitive
setting, two influencers engage in a simultaneous move game
to drive the average belief in opposite directions. When agents
are unbiased, influencer targeting strategies align with those in
the single-influencer case: They spend more on central agents.
Competition does not distort incentives. However, when agents
are biased, competition can alter equilibrium targeting strategies
relative to the single-influencer setting. This is because spending
on an agent has a two-fold effect in the competitive setting: It
increases direct interaction and decreases attention paid toward
the competitor. The former is an acquisition incentive, whereas
the latter is a deterrence incentive. Influencers must weigh the
combined effect when determining whom to target. As a result,
equilibrium targeting strategies are sensitive to how attention is
divided based on the influencers’ spending. When the deterrence

incentive dominates, and spending decreases attention paid to
the competitor more than it increases direct interaction for
the targeting influencer, influencers prioritize reducing their
competitor’s influence more than increasing their own. They
expend resources to prevent agents from being “turned” by their
rivals and target agents biased in their direction. Propagandists
will focus on their base, and firms will spend their marketing
budget on consumers partial to their products.

In the next section, I describe the model. Section 3 examines
single-influencer targeting. Section 4 examines targeting under
competition. I defer discussion of the literature to the end.

2 Model

There are 𝑁 agents, labeled {1, 2, … ,𝑁}, each holding an initial
belief 𝑏𝑖 ∈ [0, 1]. Agents are embedded in a peer network, a
directed graph defined by a non-negative, row stochastic matrix
𝑃. 𝑃𝑖𝑗 represents the frequency with which agent 𝑖 interacts with
𝑗 or the relative level of trust agent 𝑖 places in 𝑗.

External to the peer network is a set of external sources. These
include two strategic influencers and a group of “private sources”.
The first influencer, 𝑀1, has belief 1, whereas the other, 𝑀2,
has belief 0. The influencer’s belief is the message it desires to
promote. In addition to the influencers, there is a private source
𝑆𝑖 , corresponding to each agent 𝑖, with belief 𝑏𝑖 . As 𝑏𝑖 controls
agent 𝑖’s initial belief and the private source’s belief, I refer to 𝑏𝑖
as the agent’s bias.

2.1 Interaction and Communication

The influencers and private sources constitute the set of external
sources. Fix a level of external attention 𝛼𝑖 ∈ [0, 1). Each period,
agent 𝑖 interacts with the external sources with probability
𝛼𝑖 ∈ [0, 1). With probability 1 − 𝛼𝑖 , agent 𝑖 interacts with her
peers according to the matrix 𝑃. When agent 𝑖 interacts with
the external sources, he receives information from 𝑀1 and his
agent-specific private source 𝑆𝑖 . To illustrate, consider a setting
where 𝑀1 is a liberal propagandist, and 𝑀2 is a conservative
propagandist that target a moderate agent who learns outside his
peer network through browsing the internet. Although he reads
articles from both propagandists, he also receives information
from like-minded media (private source 𝑆𝑖) that reinforce his
initial belief (bias). Importantly, targeted spending by the influ-
encer affects the interaction rate between an agent and her private
source: It diverts attention away from 𝑖’s private sources toward
the influencer. The private sources, 𝑆𝑖 , are non-strategic with no
targeting ability, allowing me to capture a passive persistence of
bias.3

The probability with which agent 𝑖 learns from an external
source is fixed. However, conditional on interacting with external
sources, the probability agent 𝑖 interacts with a given influencer
is endogenous. If 𝑀𝑗 targets agent 𝑖, it can secure some portion
of the attention that 𝑖 gives to external sources. Formally, each
influencer has a budget of 1 to allocate across agents in the
network. The allocation decision is𝑀𝑗 ’s targeting strategy. Given
a targeting strategy 𝑎𝑗 ∈ [0, 1]𝑁 , a competition function 𝑓 ∶
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ℝ2 ⟶ [0, 1] determines the fraction of 𝛼𝑖 that 𝑀𝑗 wins. The
fraction of 𝛼𝑖 an influencer wins, 𝑓(⋅, ⋅), depends on her spending
and her competitor’s. If agent 𝑖 interacts with external sources,
he interacts with𝑀𝑗 with probability 𝑓(𝑎

𝑗

𝑖
, 𝑎

−𝑗
𝑖
) and from 𝑆𝑖 with

probability 1 − 𝑓(𝑎1
𝑖
, 𝑎2
𝑖
) − 𝑓(𝑎2

𝑖
, 𝑎1
𝑖
).4

Assumption 1.

1. 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 1
2. 𝑓 increasing and concave in its first argument

3. 𝑓 is decreasing and convex in its second argument

The first condition is technical, ensuring that the combined
fraction of 𝛼𝑖 won by both influencers does not exceed 1. The
second condition is a standard diminishing returns property from
additional spending. The third condition is a diminishing returns
effect of the opposition’s spending on one’s winnings.5

Each external source can be viewed as an additional node in
the network that does not update its own belief. Whereas other
nodes (i.e., the agents) learn from external sources, each external
source only learns from itself. For ease of exposition, define
diagonal matrices𝐷𝛼 and𝐷𝑆 , where𝐷𝛼

𝑖𝑖
= 1 − 𝛼𝑖 and𝐷𝑆𝑖𝑖 = 𝛼𝑖(1 −

𝑓(𝑎1
𝑖
, 𝑎2
𝑖
) − 𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)). The first two represent interaction rates

between agents and external sources, and the third represents
the distance of agents’ initial beliefs from 1. Communication can
then be described via weighted-average updating according to the
(2𝑁 + 2) × (2𝑁 + 2)matrix 𝑃∗:

𝑃∗ =
⎡⎢⎢⎢⎣
𝐷𝛼𝑃 𝛼𝑓(𝑎1, 𝑎2) 𝛼𝑓(𝑎2, 𝑎1) 𝐷𝑆

𝟎1×𝑁 1 0 𝟎1×𝑁
𝟎1×𝑁 0 1 𝟎1×𝑁
𝟎1×𝑁 0 0 𝐈𝑁×𝑁

⎤⎥⎥⎥⎦
The top left block 𝐷𝛼𝑃 corresponds to peer-to-peer communi-
cation. In an abuse of notation, 𝛼𝑓(𝑎𝑗, 𝑎−𝑗) denotes the vector
of interaction frequency between agents and 𝑀𝑗 , with the 𝑖th

component equal to 𝛼𝑖𝑓(𝑎
𝑗

𝑖
, 𝑎

−𝑗
𝑖
). 𝐷𝑆 corresponds to the direct

interaction rates from the fixed private sources. The last three
rows of the block matrix correspond to the external sources: each
external source places weight 1 on itself.

Agents update their beliefs each period according to a DeGroot
heuristic: beliefs at time 𝑡 are 𝑃∗𝑡𝑏.6 The influencers want the
average limiting belief in the network to match their own. The
average limiting belief in the network is:

𝐵(𝑎1, 𝑎2) = lim
𝑡→∞

1

𝑁
𝑒𝑇𝑃∗𝑏, where 𝑒𝑇 is a row vector of 1’s.

Influencer𝑀1 wishes to maximize 𝐵(𝑎1, 𝑎2), whereas𝑀2 wishes
to minimize it.7

It is important to note that the term “belief” need not be
interpreted literally. For instance, in a marketing context, where
influencers are firms, beliefs could reflect the probability that
a consumer views one firm as better than another, capturing
brand reputation. In a political context, where influencers are
propagandists or political groups, beliefs might reflect a left- or
right-wing view about a state of the world. Importantly, these

beliefs can be linked to actions. A consumer’s belief about
the superior firm can translate into their purchase frequency.
A voter’s beliefs can represent the likelihood of voting for a
particular party. More generally, “beliefs” can also be viewed as
behaviors that individuals adjust based on interactions with their
peers and external sources.

3 Optimal Targeting: Single-Influencer

3.1 Targeting Strategy

I begin by considering a setting with a single strategic influencer,
𝑀1. To “convert” the model to this setting, I simply eliminate
the second influencer and use a single-variable competition
function 𝑓. Communication and learning can then be described
via weighted-average updating according to the (2𝑁 + 1) × (2𝑁 +
1)matrix 𝑃∗:

𝑃∗ =
⎡⎢⎢⎣
𝐷𝛼𝑃 𝛼𝑓(𝑎1) 𝐷𝑆

𝟎1×𝑁 1 𝟎1×𝑁
𝟎𝑁×𝑁 0 𝐈𝑁×𝑁

⎤⎥⎥⎦
The goal of 𝑀1 is to target agents to drive the average limiting
belief in the network as close to 1 as possible. Her optimization
problem is:

max
𝑎1
𝑖
,𝑖=1,…,𝑛

𝐵(𝑎1)

s.t.
𝑛∑
𝑖=1
𝑎1
𝑖
≤ 1 and 𝑎1

𝑖
≥ 0 for all 𝑖

The optimal targeting strategy takes into account the following
features:

1. The agent’s bias.

2. The frequency with which an agent interacts with external
sources.

3. The agent’s position within the network.

The first two quantities are given by 𝑏𝑖 and 𝛼𝑖𝑓(𝑎1𝑖 ), respectively.
Regarding the last, how does one quantify the importance of
an agent in the network? In each period, each agent 𝑖 receives
a message from outside their peer network with probability 𝛼𝑖 .
From the influencer’s perspective, itmust quantify howmuch her
message gets dispersed through the network once a given agent 𝑖
receives the said message. Consider the matrix

∑∞
𝑡=0(𝐷

𝛼𝑃)𝑡 . The
(𝑗, 𝑖)th entry represents the time-discounted expected number of
paths between 𝑗 and 𝑖. In other words, the long-run influence 𝑖
has on 𝑗. The matrix

∑∞
𝑡=0(𝐷

𝛼𝑃)𝑡 can be written succinctly as (𝐼 −
𝐷𝛼𝑃)−1, where 𝐼 is the 𝑁 ×𝑁 identity matrix. Denote the vector
𝑒𝑇(𝐼 − 𝐷𝛼𝑃)−1 as 𝑞̂. Each component 𝑞̂𝑖 =

∑𝑁
𝑗=1(

∑∞
𝑡=0(𝐷

𝛼𝑃)𝑡)𝑗𝑖
quantifies the total long-run influence agent 𝑖 has on the rest of
the network. However, with probability 𝛼𝑖 , each agent 𝑖 interacts
with a source outside his peer network. Thus, the influence is
scaled-down by 𝛼𝑖 . Let 𝑞 denote the “scaled-down vector”. That
is, 𝑞𝑖 = 𝛼𝑖𝑞̂𝑖 . Call 𝑞 the attention-adjusted centrality vector.8
The average limiting belief can be decomposed into a linear sum
of each of these features.
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Theorem 1. The average limiting belief in the network is
1

𝑁

∑𝑛
𝑖=1 𝑞𝑖[(1 − 𝑏𝑖)𝑓(𝑎

1
𝑖
) + 𝑏𝑖].9 The influencer prefers targeting

those with higher attention-adjusted centrality and those with
opposite bias. Formally, given optimal targeting strategy 𝑎1∗:

1. If (1 − 𝑏𝑖)𝑞𝑖 > (1 − 𝑏𝑗)𝑞𝑗 then either 𝑎1∗𝑖 > 𝑎1∗
𝑗
OR 𝑎1∗

𝑖
= 𝑎1∗

𝑗
=

0.

2. If 𝑎1∗
𝑖

> 𝑎1∗
𝑗
then (1 − 𝑏𝑖)𝑞𝑖 > (1 − 𝑏𝑗)𝑞𝑗 .

The sharp characterization of the average limiting belief in the
network highlights the fundamental forces at work. Unlike tradi-
tional DeGroot learning models, the average limiting belief will
not be each agent’s limiting belief. A consensus will not emerge
because the influencer and private sources act as “stubborn
nodes” in the network that never update their beliefs.

All things equal, agents with a higher attention-adjusted central-
ity are more valuable. The attention-adjusted centrality measure
𝑞𝑖 = 𝛼𝑖𝑞̂𝑖 is a weighted network centrality measure: Each agent 𝑖’s
contribution to the limiting belief is scaled by the amount of direct
attention that the agent gives to external sources each period.
Notice, though, that the influencer considers themessages agents
receive from the private sources: 𝑞𝑖 is weighted by 1 − 𝑏𝑖 . An
influencer must consider the agent’s initial beliefs as those are
reinforced via the residual attention paid to the private sources;
the influencer must consider the agent’s bias. Agents with an
initial belief farther away from 1 aremore important for targeting.
Because the influencer faces no competition, there is less need to
target agents who are already biased toward her message: such
agents will receive similar messages anyways! Within the single-
influencer setting, an influencer prefers targeting agents with
initial beliefs farther fromhermessage. In the extreme casewhere
agents have either belief 1 or 0, all agents with a belief of 1 are
ignored. That is, 𝑎1

𝑖
= 0 when 𝑏𝑖 = 1.

The single-influencer setting should be interpreted as an environ-
ment where the strategic influencer faces passive competition,
and so her targeting can displace the attention agents pay to their
private sources. When faced with passive competition, a seller
should target agents biased toward its competitor. A propagandist
should target those biased in the opposite direction.

3.2 Effect of Network Structure on Payoffs

The characterization of the influencer’s payoff function in Theo-
rem 1 leads to the natural question of which network she prefers
to face. In other words, for which non-negative, row-stochastic
matrices 𝑃 is the influencer’s optimal payoff highest? As her
payoff depends on the network 𝑃 through the attention-adjusted
centrality vector, this question reduces to identifying the 𝑞’s that
maximizemax𝑎1

1
,…,𝑎1

𝑁

1

𝑁

∑𝑁
𝑖=1 𝛼𝑖𝑞𝑖(1 − 𝑏)𝑓(𝑎

1
𝑖
).

For simplicity of exposition, I will assume each agent has the
same bias 𝑏 < 1.10 Heterogeneous bias will not affect the result.
Now, recognize that the question above is equivalent to asking
when strategic targeting is most valuable. Without knowledge
of the network, the influencer will target each agent equally,
securing a payoff of (1 − 𝑏)𝑓( 1

𝑁
) + 𝑏. The value of knowing

the network and targeting optimally is given by the difference

between the payoff under optimal targeting and this bench-
mark: max𝑎1

1
,…,𝑎1

𝑁

1

𝑁

∑𝑁
𝑖=1 𝛼𝑖𝑞𝑖(1 − 𝑏) ⋅ [𝑓(𝑎

1
𝑖
) − 𝑓( 1

𝑁
)]. This value

is maximized precisely at 𝑞’s for whichmax𝑎1
1
,…,𝑎1

𝑁

1

𝑁

∑𝑁
𝑖=1 𝛼𝑖𝑞𝑖(1 −

𝑏)𝑓(𝑎1
𝑖
) is maximal.

Proposition 1. Strategic targeting is most valuable when facing
star networks. It is least valuable when facing a complete network.

The influencer prefers if the attention-adjusted centralities are
concentrated among a few individuals, with the star network
serving as the most extreme case. Centralities are most dispersed
in complete networks, and the influencer is forced to distribute
her budget equally across agents. The intuition behind the
preference is that when centralities are concentrated across a
small subset of agents, the influencer can expend all her resources
targeting the most central agents and benefit tremendously from
peer-to-peer learning.

4 Competition

To incorporate competition, I add a second influencer, 𝑀2, with
belief 0. Influencer 𝑀1 wishes to maximize the average belief,
whereas 𝑀2 wishes to minimize it. To provide an interpretation,
consider two firms competing for customers. The initial belief
represents an agent’s natural, passive bias toward each firm’s
products. The long-run beliefs represent the long-run frequency
of purchases from a given firm. In a political context, each
influencer represents a rival political group. The long-run beliefs
represent the long-run probability with which a given agent sides
with a particular group.

When both influencers are strategic, the optimization problems
for each, fixing the targeting decision of her competitor, are as
follows:

𝑴𝟏 𝑴𝟐

max𝑎1
1
,…,𝑎1

𝑁
𝐵(𝑎1, 𝑎2) max𝑎2

1
,…,𝑎2

𝑁
1 − 𝐵(𝑎1, 𝑎2)

s.t.
∑𝑁
𝑖=1 𝑎

1
𝑖
≤ 1, 𝑎1

𝑖
≥

0 for each 𝑖
s.t.

∑𝑁
𝑖=1 𝑎

2
𝑖
≤ 1, 𝑎2

𝑖
≥

0 for each 𝑖

Definition 1. A pure strategy equilibrium is a profile of pure
strategies (𝑎1, 𝑎2) such that each influencer is best-responding to
her competitor’s targeting strategy.

The influencers engage in a simultaneousmove gamewhere each
selects a targeting strategy.

Pure strategy equilibria are guaranteed to exist. Mixed-strategy
equilibria do not.11 A trivial generalization of the proof of
Theorem 1 yields the following expression for the average limiting
belief in the network under any targeting profile:

𝐵(𝑎1, 𝑎2) = 1
𝑁

𝑁∑
𝑖=1
𝑞𝑖𝑓(𝑎

1
𝑖
, 𝑎2
𝑖
)(1 − 𝑏𝑖)

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
Gain from direct interaction

“Single-Influencer” Component

− 1
𝑁

𝑁∑
𝑖=1
𝑞𝑖𝑓(𝑎

2
𝑖
, 𝑎1
𝑖
)𝑏𝑖

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
Gain From Reducing
Competitor’s Influence

+ 1
𝑁

𝑁∑
𝑖=1
𝑞𝑖𝑏𝑖

⏟⎴⎴⏟⎴⎴⏟
Avg. Belief

w/ no Influencers
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Looking at the expression for the average limiting belief high-
lights important incentives in the competition game. Both
influencers weigh centrality in the same manner: All else equal,
the more central an agent, the higher the marginal gain from
targeting that agent. How influencers treat agents based on
their initial, persistent beliefs is not immediate. An influencer’s
spending on agent 𝑖 has two effects: it increases direct interaction
with the agent and decreases her competitor’s direct interaction
with the agent. The former is scaled by 1 − 𝑏𝑖 , whereas the latter
is scaled by 𝑏𝑖 . Hence, there are benefits from targeting those with
beliefs far from 1 and those with beliefs close to 1.

The influencer objective functions are reminiscent of Colonel
Blotto games. In traditional Blotto games, “winning” is discrete.
One can interpret this game as a Blotto game where winning is
continuous, battlefields are of size 𝑞𝑖 , and each influencer has
advantages on some battlefields over others.

4.1 Equilibrium: Unbiased Agents

Before examining competition in a setting with biased agents, it is
useful to first consider the case where agents are unbiased: 𝑏𝑖 =

1

2

for all 𝑖. This setting, which can represent an undifferentiated
duopoly or a political contest where agents hold no initial bias
toward either party, allows us to isolate the effect of competi-
tion. I can then determine whether competition alone distorts
incentives relative to the single-influencer setting, irrespective of
bias.

Theorem 2. Suppose 𝑏𝑖 =
1

2
for all 𝑖. Then, there are only pure-

strategy symmetric equilibria.Moreover, if𝑓 satisfies 𝜕𝑓(𝑎,𝑐)
𝜕𝑥𝜕𝑦

≤ 𝜕𝑓(𝑐,𝑎)

𝜕𝑥𝜕𝑦

for 𝑎 < 𝑐, then in any equilibrium, influencers spendmore targeting
central agents in the network than non-central agents.

When agents are unbiased, the game is symmetric zero-sum.
Competition leads to targeting agents symmetrically. Theorem 2
also reveals that for a large class of competition functions,
all equilibria involve influencers targeting agents with high
attention-adjusted centrality. This aligns with the findings in
the single-influencer setting. When agents are unbiased, an
influencer prefers to target more central agents: competition does
not distort their incentives.

To provide intuition regarding the condition on 𝑓, suppose an
influencer spends𝑎 on an agent, andher competitor spends 𝑐 > 𝑎.
The term 𝜕𝑓(𝑎,𝑐)

𝜕𝑥𝜕𝑦
represents the effect of the competitor’s spending

on the marginal return in direct interaction. Now, 𝜕𝑓(𝑐,𝑎)
𝜕𝑥𝜕𝑦

can be
interpreted as the effect of the competitor’s spending on one’s
marginal return of deterrence (i.e., how the competitor’s spending
affects 𝜕𝑓(𝑐,𝑎)

𝜕𝑦
). Thus, 𝜕𝑓(𝑎,𝑐)

𝜕𝑥𝜕𝑦
≤ 𝜕𝑓(𝑐,𝑎)

𝜕𝑥𝜕𝑦
for 𝑎 < 𝑐 reflects the idea that

overspending disincentivizes one’s opponent from spending on
that agent. To see thismore clearly, consider𝑀1’s objective, which
is to maximize:

1

𝑁

𝑁∑
𝑖=1
𝑞𝑖 ⋅
1

2
[𝑓(𝑎1

𝑖
, 𝑎2
𝑖
) − 𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)]

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
Gain from targeting agent 𝑖

The function ℎ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓(𝑦, 𝑥) is the “normalized gain”
from targeting agent 𝑖 (“normalized” because it does not include
the scaling via the attention-adjusted centrality). The partial
derivative of ℎ with respect to 𝑥 is the sum of the marginal
return in direct interaction and the positive externality created
by reducing the competitor’s direct interaction. The condition on
𝑓 implies 𝜕ℎ(𝑎,𝑐)

𝜕𝑥𝜕𝑦
≤ 0 for 𝑐 ≥ 𝑎. In other words, influencer spend-

ing decisions are partially strategic substitutes. Consequently,
𝜕ℎ(𝑎,𝑎)

𝜕𝑥
>
𝜕ℎ(𝑐,𝑐)

𝜕𝑥
: when influencers are spending small amounts on

an agent, there is a greater gain to increased spending. Many
competition functions satisfy this property, including the classical
Tullock competition function, 𝑓(𝑥, 𝑦) = 𝑥

𝑥+𝑦+𝛿
.12

4.2 Biased Agents

In the previous section, I showed that competition alone does not
alter the qualitative structure of who is targeted relative to the
single-influencer case. This raises the question of whether the
dynamics change when agents are biased. In other words, does
the combination of competition with agent bias shift targeting
strategies? Do the insights from the single-influencer setting
carry over, and will influencers focus on those with dissimilar
beliefs?

When agents have varying biases, the game is no longer
symmetric, and asymmetric equilibria emerge. To determine
how influencers incorporate agents’ biases in the presence of
competition, I consider a class of networks that I call balanced.

Definition 2. A network of 𝑁 agents, 𝑁 even, is said to
be balanced if there exists a bijective map 𝐺 ∶ {1, … ,𝑁}⟶
{1,… ,𝑁} with 𝑏𝑖 = 1 − 𝑏𝐺(𝑖) and 𝑞𝑖 = 𝛼𝑖𝑞̂𝑖 = 𝛼𝐺(𝑖)𝑞̂𝐺(𝑖) = 𝑞𝐺(𝑖).

In a balanced network, for each agent 𝑖 with belief 𝑏𝑖 and
attention-adjusted centrality 𝑞𝑖 , there is a unique agent 𝑗 such
that 𝑏𝑗 = 1 − 𝑏𝑖 and 𝛼𝑗𝑞̂𝑗 = 𝛼𝑖𝑞̂𝑖 . Individual agents may be biased
in one direction or another, but there is no bias on average.
Many networks have this structure, including symmetric core-
periphery networks: networks with 𝐾 highly central nodes, each
connected to 𝑁−𝐾

𝐾
nodes of low centrality. However, a balanced

network does not require symmetry of shape, merely symmetry
of the attention-adjusted centrality 𝑞𝑖 = 𝛼𝑖𝑞̂𝑖 , which is a weaker
condition. Considering such networks allows me to isolate the
effect of the characteristics of competition on the incentive to
target like-minded agents in equilibrium.

Recall the interpretation of the competing influencers as a model
of duopoly competition between two firms fighting for customers.
A balanced network is an environment with two groups of
customers, those leaning toward one of the firms and the other
leaning toward the second firm. Within each group, agents have
differing intensities of bias. The constraint on centralities ensures
no one set of customers has a dominant influence over the other.

In the example below, I describe a game over a two-agent
balanced network. The competition function is the classical
Tullock competition function.

5
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Example 1. Let 𝑓(𝑥, 𝑦) = 𝑥

𝑥+𝑦+𝛿
, with 𝛿 ∈ (0, 1). Suppose the

network has two agents with initial beliefs 𝑏1 = 1 and 𝑏2 = 0.
Assume the attention-adjusted centrality measures satisfy 𝑞1 =
𝑞2 = 𝑞. Using the Karush–Kuhn–Tucker (KKT) conditions of
optimality, the following system of equations must be satisfied:

𝑎21

𝑎11 + 𝑎
2
1 + 𝛿

=
𝑎22 + 𝛿

𝑎12 + 𝑎
2
2 + 𝛿

and
𝑎12

𝑎12 + 𝑎
2
2 + 𝛿

=
𝑎11 + 𝛿

𝑎11 + 𝑎
2
1 + 𝛿

𝑎11 + 𝑎
1
2 = 𝑎

2
1 + 𝑎

2
2 = 1

Solving yields the unique equilibrium: 𝑎1 = ( 1−𝛿
2
,
1+𝛿

2
) and 𝑎2 =

(
1+𝛿

2
,
1−𝛿

2
).

Consistent with the single-influencer setting, the influencers
spend more of their budget targeting the agent with a differing
initial belief. The particular competition function used in Exam-
ple 1 incentivizes targeting agents with different beliefs, aligning
with the findings in the single-influencer setting. However, this is
not guaranteed. The characteristics of the equilibria are sensitive
to the properties of the competition function 𝑓. The Tullock
competition function incentivizes influencers to “reach across the
aisle” because it does not incentivize deterrence. To formalize
this, I introduce the following definition:

Definition 3. Competition is said to be intense if the following
holds:

1. 𝜕𝑓(𝑎,𝑐)

𝜕𝑥
− 𝜕𝑓(𝑐,𝑎)

𝜕𝑦
≥ 𝜕𝑓(𝑐,𝑎)

𝜕𝑥
− 𝜕𝑓(𝑎,𝑐)

𝜕𝑦
whenever 𝑎 < 𝑐.

2. − 𝜕𝑓(𝑐,𝑎)
𝜕𝑦

>
𝜕𝑓(𝑐,𝑎)

𝜕𝑥
whenever 𝑎 < 𝑐.

To provide the intuition behind the definition, suppose an
influencer is underspending on one agent and overspending on
another relative to her competitor. The first condition represents
a competitive incentive: There are weakly larger gains to be had
from spending on agents one is underspending on than from con-
tinuing to spend on those one is overspending on. This condition
is satisfied by numerous classical competition functions, such
as the Tullock competition function from Example 1. The key
property is the second, which the Tullock competition function
does not satisfy.13 The second condition represents the deterrence
incentive: Spending more on the agent she is underspending on
will hurt her competitor more than spending on the one she is
overspending on will help herself.

Theorem 3. Given a balanced network, if competition is intense,
influencers spend more targeting agents biased toward them.14

The proof of the theorem shows that for any pair of agents
𝑖 and 𝐺(𝑖), each influencer spends more targeting the agent
who is already biased toward her message. When competition is
intense, the gain from protecting conforming agents outweighs
the loss from reducing spending on agents with dissimilar beliefs.
Each influencer benefits more from targeting agents that are
more valuable to her competitor. Such agents are precisely the
ones that are biased toward the influencer. The most power-
ful incentive is deterring the opposition and protecting one’s
conforming agents from being altered. Such a finding informs
some of the applications highlighted in the introduction. The

reason why political propagandists direct resources to target
their base and firms spend money targeting customers already
biased toward purchasing their product may be due to deterrence
incentives.

Under what competition functions is competition intense? The
properties listed inDefinition 3 can be satisfied using an extension
of the Tullock competition function that incorporates the notion
that agents are already aware of each influencer (i.e., 𝑓(0, 0) >
0). One example of such a function is 𝑓(𝑥, 𝑦) = 1+𝑥

2+1.5𝑥+1.5𝑦
.15 This

function 𝑓 has the curious feature that 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥), the total
fraction of attention accorded to influencers, is decreasing in
𝑥 and 𝑦. In the context of firm marketing competitions, this
phenomenon is referred to as “advertising wearout”: Consumers
become fatigued or desensitized to repeated advertisements. In
political campaigns, it is known as “message fatigue”: Voters
disengage after being exposed to excessive political ads.16 In both
cases, although spending might reduce a competitor’s influence,
it does not fully translate into increased attention toward the
advertiser. Part of the freed-up attention is redirected to the
private source reinforcing the agent’s bias. However, this can be a
positive if the agent is biased in a favorable direction.

The conditions needed in the definition of “intense competition”
are to ensure that Theorem 3 holds independent of the magnitude
of the biases and distribution of centralities 𝑞 in the network.
If one had more network information, such conditions could be
relaxed. For example, if network centralities are not too dispersed
so that each influencer targets each agent with a fraction 𝜖 > 0 of
her budget, then − 𝜕𝑓(𝑐,𝑎)

𝜕𝑦
>
𝜕𝑓(𝑐,𝑎)

𝜕𝑥
need only hold for 𝜖 ≤ 𝑎 < 𝑐.

Intense competition is sufficient but not necessary for influencers
to spend more, targeting like-minded agents. However, the sec-
ond condition specified in the definition of intense competition
is critical.

Proposition 2. If in every balanced network, influencers spend
more targeting those biased toward them, then − 𝜕𝑓(𝑐,𝑎)

𝜕𝑦
>
𝜕𝑓(𝑐,𝑎)

𝜕𝑥

whenever 𝑎 < 𝑐.

Proposition 2 demonstrates that the deterrence incentive must
be strong for equilibrium targeting to favor like-minded agents,
independent of the magnitude of the biases and distribution
of centralities 𝑞 in the network. Importantly, if 𝑏𝑖 ∈ {0, 1} for
each 𝑖, then this deterrence property is both necessary and
sufficient for Theorem 3 to hold. The crucial feature that leads
to targeting like-minded agents is whether targeted spending can
reduce the competitor’s ability to influence an agent. It is not
so much whether spending leads to more direct interaction with
a given agent but whether it can reduce direct interaction with
one’s competitor.

4.3 Effect of Network Structure on Payoffs

The interaction between bias and competition also affects how
influencers assess which network structures are most advan-
tageous. When agents are unbiased and the conditions of
Theorem 2 are met, the average limiting belief in equilibrium is
always 1

2
, independent of the network structure. However, when

6 The RAND Journal of Economics, 2025
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agents share a common bias 𝑏, each influencer prefers different
network structures based on whether the bias is in their favor.

Proposition 3. Suppose each agent has bias 𝑏. If 𝑓( 1
𝑁
,
1

𝑁
) <

𝑓(1, 1), then influencer 𝑀1 prefers a complete (star) network over
a star (complete) network whenever 𝑏 > (<) 1

2
.17

Proposition 3 stands in stark contrast to Proposition 1. When
an influencer’s competitor is passive, the influencer prefers to
face a star network. That is not necessarily the case when
both influencers are strategic. Consider the case when 𝑏 > 1

2
:

All agents are biased toward influencer 𝑀1. If centralities are
dispersed, 𝑀1’s competitor must spread out its budget, allowing
𝑀1 to take full advantage of the agents’ favorable bias. Likewise,
when 𝑏 < 1

2
, 𝑀1 prefers if the centralities are concentrated as it

can focus all of its resources on a few agents, giving it the best
chance of “converting” the network.

The interpretation of the assumption that all agents share a
common bias is that it reflects a setting where one of the
influencers is an incumbent that has acted as a single-influencer
for a length of time, resulting in a homogeneous bias toward it.
The implication of Proposition 3 is that an incumbent is in a
stronger competitive position against future entrants when the
agents are part of a complete network, and no single agent has
a dominant influence over his peers.

5 Final Remarks

Many environments involve influencers attempting to shape
beliefs. Individuals, though, often form beliefs not only from
external targeting but also from their peers. One of the article’s
goals was to develop a tractable model to understand these
settings better. Agents in mymodel learn via a DeGroot heuristic,
but what distinguishes my model from other DeGroot learning
models are the non-strategic and strategic external sources.
Including these external sources allows for the persistence of
agents’ bias, ensuring agents do not reach a consensus belief in
the long run. In traditional DeGroot models of belief formation,
all agents share the same belief in the long-run, and so influencers
are solely concerned with an agent’s location in the network
(Golub and Jackson 2010; Golub and Sadler 2016).

An implicit assumption built into the DeGroot updating rule is
that all agents in the network are informed about the relevant
issue. Therefore, although the applications of my model are
to firm marketing competitions and propaganda campaigns, it
is important to note that it is best suited for settings where
consumers are already familiar with the brands or where voters
are aware of the political event and understand the general
left- or right-wing perspectives. A common criticism of the
DeGroot learning rule is its simplicity and how agents do not
account for the repetition of information. However, accounting
for such repetition requires significant computing power, and
arguments based on bounded rationality support the use of
such heuristics (DeMarzo et al. 2003). In fact, Chandrasekhar
et al. (2020) provide empirical evidence demonstrating that
it mirrors observed patterns of information-sharing behavior
in communication networks. Additionally, Grimm and Mengel
(2020) demonstrate via experiments that DeGroot learning cap-

tures how agents form opinions about the value of an unknown
state.

The belief updating rule in this model is mathematically equiv-
alent to other processes. For instance, suppose learning is
stochastic: 𝑃∗

𝑖𝑗
denotes the probability of interaction between

𝑖 and 𝑗, and each time communication takes place, agent 𝑖
adopts the belief held by the party she communicates with. Then,
lim𝑡→∞ 𝑃

∗𝑡𝑏 represents the expected belief held by each agent
in the long run. Another communication and updating protocol
yielding the same structure involves agents and external sources
sharing binary articles (0 or 1), with beliefs in period 𝑡 equal
to the fraction of articles received with a value of 1. If 𝑏𝑖 is the
initial frequency at which agent 𝑖 shares an article with a value
of 1, and sharing frequencies in period 𝑡 + 1 are equal to 𝑏𝑡 , then
lim𝑡→∞ 𝑃

∗𝑡𝑏 is the long-run fraction of articles with a value of 1
that agents have received.

Given the model and its applications, choosing to use long-
run limiting beliefs as the influencer’s objective is natural. The
model, though, does provide a framework to explore targeting
behavior when influencers have other objectives, which may be
interesting for future research. For example, if influencer 𝑀𝑗
is focused on long-run awareness, it would want to maximize
the quantity lim𝑡→∞

1

𝑁
⋅
∑𝑁
𝑖=1 𝑃

∗𝑡
𝑖,𝑁+𝑗 , which measures how much

agents incorporate the influencer into their long-run beliefs.
Similarly, in other applications, it might be that the influencer
only cares about agent beliefs in so far as those beliefs cross a spe-
cific threshold. Crucially, the model in this article is sufficiently
tractable to analyze competitive settings between influencers with
such objectives.

5.1 RelatedWorks

My article fits into the theoretical literature on opinion dynamics,
offering a model of learning that incorporates both DeGroot
learning and the persistence of agents’ initial beliefs.18 The
learning process in my model is related to that described in
Friedkin and Johnsen (1999), where agents are embedded in a
network, learn from their peers, and are heterogeneous in their
susceptibility to interpersonal influence. A lack of consensus in
the limit arises when some agents are not susceptible to peer
influence.19 Mymodel can be viewed similarly by interpreting 1 −
𝛼𝑖 as agent 𝑖’s susceptibility to his peers and 𝛼𝑖 as his susceptibility
to the external sources. However, the influencers in my model
can choose whom to link to and the intensity of the link, thereby
making agent susceptibility toward external sources endogenous.

The idea of influencer targeting to spread information in a
network is related to the research on “seeding” a network (e.g.,
Kempe et al. 2003, 2005; Banerjee et al. 2013, 2019; Kim et al. 2015).
However, my article incorporates strategic competition in diffu-
sion. The addition of competition in seeding causes influencers
to consider how seeding reduces the influence of their rivals, a
force absent in a single-influencer seeding setting.

Mostagir et al. (2022) also examine how a single influencer
manipulates long-run beliefs of agents in a network when agents
receive impressions across multiple external sources. A crucial
distinction is that the influencer is not budget constrained and

7
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only benefits from targeting if an agent’s belief reaches a particu-
lar threshold. One can viewMostagir et al. (2022) through the lens
of mymodel by changing the influencer’s objective function from
the average limiting belief to a threshold objective and replacing
the budget constraint with a marginal cost associated with
spending. Then, when there is no competition, an influencer may
find it optimal not to spend resources targeting (e.g., the targeting
necessary to push beliefs above the threshold is too costly).
However, my model highlights the importance of competition
even with the threshold objective. In the absence of competition,
an influencer may refrain from targeting; however, the presence
of competition can encourage her to spend strategically to reduce
the rival’s ability to manipulate beliefs.

The most closely related works are Bimpikis et al. (2016) and
Goyal et al. (2019), which study competitive diffusion between
two firms on a network. However, agent bias is not persistent,
and firms only care about the average fraction of “impressions”
generated. Specifically, Bimpikis et al. (2016) is a special case of
my framework when the influencer’s objective is to maximize the
long-run weights agents place on her (i.e., 𝑀1 maximizing the
average of the elements in the (𝑁 + 1)𝑡ℎ column of lim𝑡→∞ 𝑃

∗𝑡).
An influencer with this objective is agnostic about how agents
interact with other external sources. In my model, influencers
must be concerned with the distribution of impressions generated
and thedistribution of long-runweights acrossall external sources.
This distinction is significant not just at a technical level but in
terms of applications. For example, suppose agents make binary
choices based on their beliefs about a state. An agent’s limiting
belief is based on the entire distribution of messages he receives,
not just the fraction of messages received directly and indirectly
from an influencer.

When influencers target like-minded agents in my model, it is
due to an incentive to deter one’s competitor. This particular force
contrasts my result with Sadler (2023), which examines opinion
dynamics in a single-influencer setting. Sadler (2023) identifies
conditions under which the influencer targets her base, but this
is due to risk-aversion on the part of the influencer. In my model,
influencers are risk-neutral, but appeals to the base occur due
to competition.
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Endnotes
1 See Statista: Third PartyAudienceData and Statista: Digital Advertising
Spending.

2https://www.emarketer.com/press-releases/2024-political-ad-
spending-will-jump-nearly-30-vs-2020/

3An alternative interpretation of private sources is that they are simply a
modeling device to ensure the agent always places someweight on their
initial belief.

4Mixed strategies would correspond to a probability measure over {𝑎1 ∈
[0, 1]𝑁 |∑ 𝑎1

𝑖
≤ 1}. In the single-influencer setting, the strategy space

can be restricted to pure strategies because 𝑓 is concave.
5The inclusion of the competition function contrasts my model with
Grabisch et al. (2018). In that article, influencer strategies are restricted
to the formation of a single link in the network, and the effect of this
link formation is fixed. I allow influencers to choose both the breadth
and intensity of their targeting.

6 If𝛼𝑖 = 0,meaning agents do not interactwith any external sources, then
beliefs at time 𝑡 are 𝑃𝑡𝑏 as in the classic DeGroot learning models.

7 I show the quantity 𝐵(𝑎1, 𝑎2) is well-defined in the proof of Theorem 1.
8Related is Katz–Bonacich centrality (Bonacich 1987; Bloch et al. 2023)
and the DeGroot centrality measure in Mostagir et al. (2022). In the
latter, influencer targeting is binary (to target or not to target) and the
frequency of interaction conditional on targeting is fixed.As a result, the
amount of attention agents devote to external sources is endogenous.
In mine, the available attention toward external sources is fixed, but
the distribution of attention is not. Hence, my centrality measure is
static: it takes into account transmission within the peer network
scaled by the amount of available attention directed outside the peer
network.

9 If the set of private sources agent 𝑖 interacts with directly has
average belief 𝜌𝑖 , then the average limiting belief in the network is
1

𝑁

∑𝑛
𝑖=1 𝑞𝑖[(1 − 𝜌𝑖)𝑓(𝑎

1
𝑖
) + 𝜌𝑖].

10 If 𝑏 = 1, the average limiting belief will be 1, independent of the
influencer’s targeting decisions.

11 See Lemma 2.
12This competition function has been employed in a number of areas,
including the economics of advertising, tournaments, and political
economy—see Corchón (2007) for a survey.

13To see this, notice that 𝜕𝑓(𝑐,𝑎)
𝜕𝑥

= 𝑎+𝛿
(𝑐+𝑎+𝛿)2

and − 𝜕𝑓(𝑐,𝑎)
𝜕𝑦

= 𝑐

(𝑐+𝑎+𝛿)2
. For

𝑎 ∈ (𝑐 − 𝛿, 𝑐), 𝜕𝑓(𝑐,𝑎)
𝜕𝑥

> − 𝜕𝑓(𝑐,𝑎)
𝜕𝑦

.

14Analyzing the relationship between targeting and bias requires con-
trolling for centrality. If not, there is a risk that network centrality
dominates equilibriumbehavior. Specifically, if the centrality of a subset
of agents significantly exceeds that of other agents, then no influencer
would spend more targeting agents outside that subset than within
it. In the extreme case, where max 𝑞𝑖 ≈ 𝑁, influencers would allocate
nearly their entire budget to a single agent. The balanced network
assumption serves as an appropriate benchmark because it avoids this
effect.

15Competition is intense for any 𝑓(𝑥, 𝑦) = 𝑎+𝑥
𝑏+𝑐⋅𝑥+𝑐⋅𝑦

, where 𝑎, 𝑏, and 𝑐 are

positive constants with 𝑎𝑐 ∈ ( 𝑏
2
, 𝑏).

16 Blair (2000) and Lu (2022).
17The condition on function 𝑓 is not stringent. For example, any function
of the form 𝑓(𝑥, 𝑦) = 𝑐(𝑥)

𝑐(𝑥)+𝑐(𝑦)+𝛿
where 𝑐(⋅) increasing and 𝑐(0) = 0,

satisfies the property.
18Molavi et al. (2018) and Dasaratha et al. (2023) provide microfounda-
tions for the DeGroot learning rule.

19Such agents are equivalent to the “stubborn” agents in Acemoglu et al.
(2010) and Yildiz et al. (2013).

20As 𝑃̂ + 𝜓𝑒𝑇 is row-stochastic and 𝑣 is a unit vector,
∑𝑁
𝑗=1 𝑣𝑗

∑𝑁
𝑖=1(𝑃̂𝑗𝑖 +

Ψ𝑗) =
∑𝑁
𝑗=1 𝑣𝑗 .

8 The RAND Journal of Economics, 2025
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21Let 𝑙∗ ∶= max {𝑖 ∶ 𝑎𝑖 > 0}. The existence of 𝑘∗ guarantees 𝑞′
1
> 𝑞1.

Therefore, the claim is trivially true if 𝑙∗ = 1, as that wouldmean 𝑎1 = 1
and 𝑎𝑖 = 0 for all 𝑖 ≥ 2. If 𝑙∗ > 1, then the KKT conditions in (A.1)

imply
𝑞′
𝑖

𝑞′
𝑗

= 𝑞𝑖

𝑞𝑗
for all 𝑖, 𝑗 ≤ 𝑙∗. As 𝑞′

1
> 𝑞1, this means 𝑞′𝑖 > 𝑞𝑖 for all

𝑖 ∈ {1, … , 𝑙∗}.
22By Lemma 4, 𝑖∗ ≥ 2, and so such a 𝛿 exists.
23The influencer’s optimal payoff is maximal when max𝑖 𝑞𝑖 = 𝑁.
Although the star network satisfies this property, other network
structures can also satisfy it. For instance, consider a tree network
where the root node puts full weight on itself, and all other nodes place
full weight on their parent node.
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Appendix A: Main Proofs

A.1 Proofs: Targeting and Equilibrium

To compute 𝐵∗(𝑎1), I need to first compute lim𝑡→∞ 𝑃
∗𝑡 . Simple matrix algebra yields:

𝑃∗
𝑡 =

⎡⎢⎢⎣
(𝐷𝛼𝑃)𝑡 (

∑𝑡
𝑖=0(𝐷

𝛼𝑃)𝑖) ⋅ 𝛼𝑓(𝑎1) (
∑𝑡
𝑖=0(𝐷

𝛼𝑃)𝑖) ⋅ 𝐷𝑆

𝟎1×𝑁 1 𝟎1×𝑁
𝟎𝑁×𝑁 𝟎𝑁×1 𝐈𝑁×𝑁

⎤⎥⎥⎦
Now, lim𝑡→∞

∑𝑡
𝑖=0(𝐷

𝛼𝑃)𝑖 = (𝐼 − 𝐷𝛼𝑃)−1, so the only term left to calculate is lim𝑡→∞(𝐷
𝛼𝑃)𝑡 .

Lemma 1. If 𝑃̂ = 𝐷𝛼𝑃 for some 𝛼 ≠ 𝟎, then lim𝑡→∞ 𝑃̂
𝑡 = 0.

Proof. 𝑃̂ is substochastic with at least one row sum strictly less than 1. As 𝑃 is aperiodic and strongly connected, 𝑃̂ is irreducible and there exists 𝑛 ∈ ℕ
such that 𝑃̂𝑛 has positive entries. By the Perron–Frobenius theorem, there exists 𝜆 > 0 such that 𝜆 is the largest eigenvalue of 𝑃̂ and the associated unit
left eigenvector 𝑣 of 𝑃̂ is strictly positive.

Let Ψ ∈ ℝ𝑁+ be the positive vector such that Ψ𝑗 =
1

𝑁
(1 −

∑𝑁
𝑖=1 𝑃̂𝑗𝑖). Thus, 𝑃̂ + Ψ𝑒

𝑇 is row-stochastic, where 𝑒 is a column vector of 1’s. Now:

𝜆𝑣 = 𝑣𝑇𝑃̂ ⟹ 𝜆𝑣𝑖 =
𝑁∑
𝑗=1
𝑃̂𝑗𝑖𝑣𝑗 for each 𝑖 ⟹ 𝜆 =

𝑁∑
𝑖=1

𝑁∑
𝑗=1
𝑃̂𝑗𝑖𝑣𝑗

=
𝑁∑
𝑖=1

𝑁∑
𝑗=1
(𝑃̂𝑗𝑖 − Ψ𝑗 + Ψ𝑗)𝑣𝑗 =

𝑁∑
𝑖=1

𝑁∑
𝑗=1
(𝑃̂𝑗𝑖 + Ψ𝑗)𝑣𝑗 −

𝑁∑
𝑖=1

𝑁∑
𝑗=1
Ψ𝑗𝑣𝑗 =

𝑁∑
𝑖=1

𝑁∑
𝑗=1
(𝑃̂𝑗𝑖 + Ψ𝑗)𝑣𝑗 −𝑁(Ψ ⋅ 𝑣)

=
∑𝑁
𝑗=1 𝑣𝑗

∑𝑁
𝑖=1(𝑃̂𝑗𝑖 + Ψ𝑗) −𝑁(Ψ ⋅ 𝑣) = 1 −𝑁(Ψ ⋅ 𝑉) < 1, because Ψ is non-zero and non-negative.20 Recognize that 𝑣𝑇𝑃̂ = 𝜆𝑣⟹ 𝑣𝑇𝑃̂𝑡 = 𝜆𝑡𝑣⟹

lim𝑡→∞ 𝑣𝑃̂
𝑡 = 0. As 𝑣 is positive and 𝑃̂ is non-negative, lim𝑡→∞ 𝑃̂

𝑡 = 0. □

Proof of Theorem 1(i): Applying Lemma 1:

lim
𝑡→∞
𝑃∗
𝑡 =

⎡⎢⎢⎢⎣
𝟎𝑁×𝑁 (𝐼 − 𝐷𝛼𝑃)−1 ⋅ 𝛼𝑓(𝑎1) (𝐼 − 𝐷𝛼𝑃)−1 ⋅ 𝐷𝑆
𝟎1×𝑁 1 𝟎1×𝑁
𝟎𝑁×𝑁 𝟎𝑁×1 𝐈𝑁×𝑁

⎤⎥⎥⎥⎦
⟹𝐵(𝑎1) = 1

𝑁
𝑒𝑇
[
lim
𝑡→∞
𝑃∗𝑡𝑏

]
𝑁×1

= 1
𝑁
𝑒𝑇(𝐼 − 𝐷𝛼𝑃)−1 ⋅

[
𝛼𝑓(𝑎1) + 𝛼(1 − 𝑓(𝑎1))𝑏

]
= 1
𝑁
𝑞̂ ⋅

[
𝛼𝑓(𝑎1) + 𝛼(1 − 𝑓(𝑎1))𝑏

]
= 1
𝑁

𝑁∑
𝑖=1
𝛼𝑖𝑞̂𝑖[(1 − 𝑏𝑖)𝑓(𝑎1𝑖 ) + 𝑏𝑖] =

1

𝑁

𝑁∑
𝑖=1
𝑞𝑖[(1 − 𝑏𝑖)𝑓(𝑎1𝑖 ) + 𝑏𝑖]

Proof of Theorem 1(ii): Given the closed-form expression for 𝐵(𝑎1), the KKT conditions for optimality provide the following characterization of the
optimal targeting strategy:

𝑎1∗
𝑖

=
⎧⎪⎨⎪⎩
𝑎1
𝑖

s.t. 1
𝑁
(1 − 𝑏𝑖)𝑞𝑖

𝜕𝑓(𝑎1
𝑖
)

𝜕𝑥
= 𝜇

0 if 1
𝑁
(1 − 𝑏𝑖)𝑞𝑖

𝜕𝑓(0)

𝜕𝑥
= 𝜇 − 𝜆𝑖, 𝜆𝑖 ≥ 0

(A.1)

Using (A.1), concavity of 𝑓 implies that if (1 − 𝑏𝑖)𝑞𝑖 > (1 − 𝑏𝑗)𝑞𝑗 , then 𝑎1∗𝑖 > 𝑎1
𝑗
whenever 𝑎1

𝑗
> 0.

Similarly, if 𝑎1∗
𝑖

> 𝑎1∗
𝑗
, then it follows from (A.1) that 1

𝑁
(1 − 𝑏𝑖)𝑞𝑖

𝜕𝑓(𝑎1∗
𝑖
)

𝜕𝑥
≥ 1

𝑁
(1 − 𝑏𝑗)𝑞𝑗

𝜕𝑓(𝑎1∗
𝑗
)

𝜕𝑥
. As,

𝜕𝑓(𝑎1∗
𝑖
)

𝜕𝑥
<

𝜕𝑓(𝑎1∗
𝑗
)

𝜕𝑥
by concavity of 𝑓, it necessarily

means (1 − 𝑏𝑖)𝑞𝑖 > (1 − 𝑏𝑗)𝑞𝑗 . □

Lemma 2. There is no mixed-strategy equilibrium.

Proof. Define ℎ𝑖(𝑥, 𝑦) = (1 − 𝑏𝑖)𝑓(𝑥, 𝑦) − 𝑏𝑖𝑓(𝑦, 𝑥) for any 𝑥, 𝑦 ∈ [0, 1]. Given pure strategies 𝑎1, 𝑎2 ∈
{
𝑧 ∶ 𝑧 ∈ ℝ𝑁, 𝑧𝑖 ≥ 0,∑𝑁𝑖=1 𝑧𝑖 = 1}, the payoff to

𝑀1 is 𝐵(𝑎1, 𝑎2) =
1

𝑁

∑𝑁
𝑖=1 𝑞𝑖[ℎ𝑖(𝑎

1
𝑖
, 𝑎2
𝑖
) + 𝑏𝑖], whereas the payoff to𝑀2 is 1 − 𝐵(𝑎1, 𝑎2). The game is obviously zero-sum.

Suppose there is a mixed-strategy equilibrium and𝑀2 usesmixed strategy 𝜎2 over the simplex. It must be that𝑀1 is indifferent between all actions in the
support of her strategy and prefers the actions in the support to those outside of it. Suppose𝑀1 plays a pure strategy 𝑎1 where 𝑎1𝑖 = 𝔼𝜎2 [𝑎

2
𝑖
]. By Jensen’s

inequality,𝑀1’s payoff is:

1

𝑁 ∫
𝑁∑
𝑖=1
𝑞𝑖ℎ𝑖(𝑎

1
𝑖
, 𝑎2
𝑖
)𝑑𝜎2 =

1

𝑁

∑
𝑖

𝑞𝑖 ∫ ℎ𝑖(𝑎1𝑖 , 𝑎2𝑖 )𝑑𝜎2(𝑎2𝑖 ) >
1

𝑁

∑
𝑖

𝑞𝑖ℎ𝑖(𝑎
1
𝑖
, 𝑎1
𝑖
) = 1
𝑁

𝑁∑
𝑖=1
𝑞𝑖𝑏𝑖

Thus, anymixed strategy equilibriummust guarantee𝑀1 a payoff strictly greater than
1

𝑁

∑𝑁
𝑖=1 𝑞𝑖𝑏𝑖 . By symmetry,𝑀2must be guaranteed a payoff strictly

greater than 1 − 1

𝑁

∑𝑁
𝑖=1 𝑞𝑖𝑏𝑖 . However, the sum of their payoffs would then be strictly greater than 1, which is impossible. Thus, no mixed-strategy

equilibrium exists. □

10 The RAND Journal of Economics, 2025
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Proof of Theorem 2: The action set of each influencer is convex and compact, and 𝐵(𝑎1, 𝑎2) is continuous in each argument, concave in 𝑎1, and convex
in 𝑎2. Therefore, a pure strategy equilibrium exists. By Lemma 2, no mixed strategy equilibrium exists. As the game is symmetric zero-sum, all equilibria
are symmetric, and so I suppress dependence of the targeting strategy on the index of the influencer. Consider any equilibrium (𝑎, 𝑎). Suppose 𝑎𝑖 ≤ 𝑎𝑗
and 𝑞𝑖 > 𝑞𝑗 . It follows that:

𝑞𝑖

(
𝜕𝑓(𝑎𝑖, 𝑎𝑖)

𝜕𝑥
−
𝜕𝑓(𝑎𝑖, 𝑎𝑖)

𝜕𝑦

)
> 𝑞𝑖

(
𝜕𝑓(𝑎𝑖, 𝑎𝑗)

𝜕𝑥
−
𝜕𝑓(𝑎𝑗, 𝑎𝑖)

𝜕𝑦

)
> 𝑞𝑖

(
𝜕𝑓(𝑎𝑗, 𝑎𝑗)

𝜕𝑥
−
𝜕𝑓(𝑎𝑗, 𝑎𝑗)

𝜕𝑦

)
> 𝑞𝑗

(
𝜕𝑓(𝑎𝑗, 𝑎𝑗)

𝜕𝑥
−
𝜕𝑓(𝑎𝑗, 𝑎𝑗)

𝜕𝑦

)
This violates the KKT conditions of optimality unless 𝑎𝑖 = 𝑎𝑗 = 0. □

Lemma 3. In a balanced network, if (𝑎1, 𝑎2) is a pure strategy equilibrium, then 𝑎1
𝑖
= 𝑎2

𝐺(𝑖)
.

Proof. Let 𝐴𝑗 =
{
𝑎 ∈ [0, 1]𝑁 |∑ 𝑎𝑖 ≤ 1} denote 𝑀𝑗 ’s strategy set, and let 𝜋𝑗 ∶ 𝐴1 × 𝐴2 ⟶ [0, 1] denote 𝑀𝑗 ’s payoff function. Notice 𝜋1(𝑥, 𝑦) = 1 −

𝜋2(𝑥, 𝑦), and so the game is zero-sum. Because𝑀𝑗 ’s payoff function is concave in her strategy, there is at least one pure-strategy equilibrium.

Given a balanced network, let 𝐺 denote the corresponding function that maps each agent to her counterpart. One can view 𝐺 as a permutation on
{1, … ,𝑁}. In an abuse of notation, given any vector 𝑥 ∈ ℝ𝑁 , define 𝐺(𝑥) = (𝑥𝐺(1), … , 𝑥𝐺(𝑁)). Recognize that 𝐺◦𝐺 is the identity operator and 𝜋1(𝑥, 𝑦) =
𝜋2(𝐺(𝑦), 𝐺(𝑥)). Thus, if (𝑥, 𝑦) is an equilibrium, (𝐺(𝑦), 𝐺(𝑥)) must also be an equilibrium. Furthermore, 𝜋𝑗(𝑥, 𝐺(𝑥)) =

1

2
for any 𝑥, which means that

any pure-strategy equilibrium must yield payoffs of 1
2
to each influencer.

Suppose there is an equilibrium (𝑥, 𝑦) such that 𝑦 ≠ 𝐺(𝑥). This implies that 𝜋1(𝑥, 𝑦) = 𝜋1(𝑥, 𝐺(𝑥)) = 1

2
⟹ 𝜋2(𝑥, 𝑦) = 𝜋2(𝑥, 𝐺(𝑥)) =

1

2
. However, 𝜋2 is

concave in its second argument⟹𝜋2(𝑥, 𝜆𝑦 + (1 − 𝜆)𝐺(𝑥)) >
1

2
for some 𝜆 ∈ (0, 1). This contradicts the assumption that (𝑥, 𝑦) is an equilibrium. Thus,

any equilibrium must be of the form (𝑥, 𝐺(𝑥)). □

Proof of Theorem 3: There are only pure strategy equilibria (Lemma 2). Consider any equilibrium (𝑎1, 𝑎2). Lemma 3 implies 𝑎2 = 𝐺(𝑎1). Suppose there
is an agent 𝑖 with 𝑏𝑖 >

1

2
such that 𝑎1

𝑖
< 𝑎1

𝑗
for 𝑗 = 𝐺(𝑖). By the KKT conditions of optimality:

(1 − 𝑏𝑖)
𝜕𝑓(𝑎1

𝑖
, 𝑎2
𝑖
)

𝜕𝑥
− 𝑏𝑖
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑦
≤ (1 − 𝑏𝑗)

𝜕𝑓(𝑎1
𝑗
, 𝑎2
𝑗
)

𝜕𝑥
− 𝑏𝑗

𝜕𝑓(𝑎2
𝑗
, 𝑎1
𝑗
)

𝜕𝑦

⟹ (1 − 𝑏𝑖)
𝜕𝑓(𝑎1

𝑖
, 𝑎2
𝑖
)

𝜕𝑥
− 𝑏𝑖
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑦
≤ 𝑏𝑖 𝜕𝑓(𝑎

2
𝑖
, 𝑎1
𝑖
)

𝜕𝑥
− (1 − 𝑏𝑖)

𝜕𝑓(𝑎1
𝑖
, 𝑎2
𝑖
)

𝜕𝑦

⟹ 𝑏𝑖

(
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑥

)
≤ (1 − 𝑏𝑖)

(
−
𝜕𝑓(𝑎1

𝑖
, 𝑎2
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎1

𝑖
, 𝑎2
𝑖
)

𝜕𝑥

)

Now, −
𝜕𝑓(𝑎2

𝑖
,𝑎1
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎2

𝑖
,𝑎1
𝑖
)

𝜕𝑥
> 0 and −

𝜕𝑓(𝑎2
𝑖
,𝑎1
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎2

𝑖
,𝑎1
𝑖
)

𝜕𝑥
+
𝜕𝑓(𝑎1

𝑖
,𝑎2
𝑖
)

𝜕𝑦
+
𝜕𝑓(𝑎1

𝑖
,𝑎2
𝑖
)

𝜕𝑥
≥ 0. As 𝑏𝑖 > 1

2
, it follows that 𝑏𝑖 > 1 − 𝑏𝑖 :

⟹𝑏𝑖

(
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑥

)
> (1 − 𝑏𝑖)

(
−
𝜕𝑓(𝑎1

𝑖
, 𝑎2
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎1

𝑖
, 𝑎2
𝑖
)

𝜕𝑥

)

This is a contradiction given the conditions on 𝑓 as a result of competition being intense. Thus, it must be that 𝑎1
𝑖
> 𝑎1

𝐺(𝑖)
in equilibrium. A symmetric

argument demonstrates that 𝑎2
𝐺(𝑖)

> 𝑎2
𝑖
. Each influencer spends more targeting the agent with a similar belief. □

Proof of Proposition 2: If the influencer targets like-minded agents in all networks, then, in particular, theymust do so when the initial beliefs of agents
are such that 𝑏𝑖 ∈ {0, 1} for all 𝑖. Thus, let us consider only balanced networks with such initial beliefs. Consider two agents 𝑖 and 𝑗 such that 𝑗 = 𝐺(𝑖)
and 𝑏𝑖 = 1. Let total spending be 𝑇(𝑖, 𝑗) on these agents by an influencer in equilibrium (as the network is balanced, both influencers spend the same
total amount on each of these agents). Now, for any 𝜖 ∈ [0, 1], if the centralities of agents 𝑖 and 𝑗 are sufficiently small, then 𝑇(𝑖, 𝑗) ≤ 𝜖. Likewise, if the
centralities of agents 𝑖 and 𝑗 are sufficiently large, 𝑇(𝑖, 𝑗) ≥ 𝜖. Hence, there exists networks such that for any 𝑍 ∈ [0, 1], 𝑇(𝑖, 𝑗) = 𝑍.
Given a network with 𝑇(𝑖, 𝑗) = 𝑍, the KKT conditions imply that in equilibrium:

𝑏𝑖

(
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑥

)
≤ 0

In any equilibrium, the influencers spend more on conforming agents, and so the expression in the parentheses is negative whenever 𝑎1
𝑖
< 𝑎2

𝑖
. Because

𝑎2
𝑖
= 𝑎1

𝑗
= 𝑍 − 𝑎1

𝑖
, it follows that:

−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑦
−
𝜕𝑓(𝑎2

𝑖
, 𝑎1
𝑖
)

𝜕𝑥
< 0 for 𝑎1

𝑖
< 𝑎2

𝑖
⟺

𝜕𝑓(𝑍 − 𝑎, 𝑎)
𝜕𝑦

−
𝜕𝑓(𝑍 − 𝑎, 𝑎)

𝜕𝑥
< 0 for 𝑎 < 𝑍

2

As this must hold for all 𝑍 ∈ [0, 1], the result follows. □
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A.2 Proofs: Network Structure

To prove Proposition 1, I use the following two lemmas. The first shows that the sum of the entries of an attention-adjusted centrality vector is 𝑁. The
second shows that the influencer’s optimal payoff is higher when the centralities are concentrated rather than dispersed. Within the proofs, I assume
that for every attention-adjusted centrality vector 𝑞 = (𝑞1, … , 𝑞𝑁) that 𝑞1 ≥ 𝑞2 ≥ … ≥ 𝑞𝑁 . This is without loss.
Lemma 4. If 𝑞 is an attention-adjusted centrality vector, then

∑𝑁
𝑖=1 𝑞𝑖 = 𝑁.

Proof. Recall 𝑞 = 𝑒𝑇(𝐼 − 𝐷𝛼𝑃)−1(𝐼 − 𝐷𝛼). Expanding (𝐼 − 𝐷𝛼𝑃)−1 as a power series yields:

𝑞 = 𝑒𝑇 ⋅
∞∑
𝑖=0
(𝐷𝛼)𝑖𝑃𝑖 ⋅ (𝐼 − 𝐷𝛼) = 𝑒𝑇 ⋅

[
𝐼 +

∞∑
𝑖=1
(𝐷𝛼)𝑖𝑃𝑖−1(𝑃 − 𝐼)𝑖

]

⟹

𝑁∑
𝑖=1
𝑞𝑖 = 𝑒𝑇 ⋅

[
𝐼 +

∞∑
𝑖=1
(𝐷𝛼)

𝑖
𝑃𝑖−1(𝑃 − 𝐼)𝑖

]
⋅ 𝑒 = 𝑁 +

∞∑
𝑖=1
(𝐷𝛼)

𝑖
𝑃𝑖−1 (𝑃 − 𝐼)𝑖𝑒
⏟⎴⏟⎴⏟

=0

= 𝑁 □

Lemma 5. Let 𝑞 and 𝑞′ be two attention-adjusted centrality vectors. If there exists 𝑘∗ such that 𝑞′
𝑖
> 𝑞𝑖 for 𝑖 ∈ {1, … , 𝑘∗} and 𝑞′𝑖 ≤ 𝑞𝑖 for 𝑖 ∈ {𝑘∗ + 1, … ,𝑁},

then:

max
𝑎1
1
,…,𝑎1

𝑁

1

𝑁

𝑁∑
𝑖=1
𝑞′
𝑖

[
(1 − 𝑏)𝑓(𝑎1

𝑖
) + 𝑏

]
> max
𝑎1
1
,…,𝑎1

𝑁

1

𝑁

𝑁∑
𝑖=1
𝑞𝑖
[
(1 − 𝑏)𝑓(𝑎1

𝑖
) + 𝑏

]
Proof. For notational convenience, set ℎ(𝑥) = (1 − 𝑏)𝑓(𝑥) + 𝑏. Let 𝑎′ and 𝑎 denote the optimal targeting strategy when the attention-adjusted centrality
vector is 𝑞′ and 𝑞, respectively.

Case #1: 𝑎′ = 𝑎
First, recognize that 𝑞′

𝑖
> 𝑞𝑖 whenever 𝑎𝑖 > 0.21 It follows that:

1

𝑁

𝑁∑
𝑖=1
𝑞′
𝑖
ℎ(𝑎𝑖) =

𝑙∗∑
𝑖=1
𝑞′
𝑖
ℎ(𝑎𝑖) +

1

𝑁
⋅ (𝑁 −

𝑙∗∑
𝑖=1
𝑞′
𝑖
)ℎ(0)

= 1
𝑁

𝑙∗∑
𝑖=1
𝑞𝑖ℎ(𝑎𝑖) +

1

𝑁

𝑙∗∑
𝑖=1
(𝑞′
𝑖
− 𝑞𝑖)ℎ(𝑎𝑖) +

1

𝑁
⋅ (𝑁 −

𝑙∗∑
𝑖=1
𝑞′
𝑖
)ℎ(0)

>
1

𝑁

𝑙∗∑
𝑖=1
𝑞𝑖ℎ(𝑎𝑖) +

1

𝑁
⋅

[
𝑙∗∑
𝑖=1
(𝑞′
𝑖
− 𝑞𝑖) +𝑁 −

𝑙∗∑
𝑖=1
𝑞′
𝑖

]
ℎ(0)

= 1
𝑁

𝑙∗∑
𝑖=1
𝑞𝑖ℎ(𝑎𝑖) +

1

𝑁
(𝑁 −

𝑙∗∑
𝑖=1
𝑞𝑖)ℎ(0) =

1

𝑁

𝑁∑
𝑖=1
𝑞𝑖ℎ(𝑎𝑖)

Case #2: 𝑎′ ≠ 𝑎
By optimality of 𝑎′:

1

𝑁

𝑁∑
𝑖=1
𝑞′
𝑖
ℎ(𝑎′

𝑖
) >
1

𝑁

𝑁∑
𝑖=1
𝑞′
𝑖
ℎ(𝑎𝑖) =

1

𝑁

𝑁∑
𝑖=1
𝑞𝑖ℎ(𝑎𝑖) +

1

𝑁

(
𝑘∗∑
𝑖=1
(𝑞′
𝑖
− 𝑞𝑖)ℎ(𝑎𝑖) −

𝑁∑
𝑖=𝑘∗+1
(𝑞𝑖 − 𝑞′𝑖 )ℎ(𝑎𝑖)

)
(A.2)

≥ 1
𝑁

𝑁∑
𝑖=1
𝑞𝑖ℎ(𝑎𝑖) +

1

𝑁
⋅ ℎ(𝑎𝑘∗ ) ⋅

(
𝑘∗∑
𝑖=1
(𝑞′
𝑖
− 𝑞𝑖) −

𝑁∑
𝑖=𝑘∗+1

(𝑞𝑖 − 𝑞′𝑖 )

)
(A.3)

Inequality (A.3) follows from Theorem 1: 𝑞𝑖 ≥ 𝑞𝑗 for 𝑖 < 𝑗 ⟹ 𝑎𝑖 ≥ 𝑎𝑗 . Lemma 4 implies ∑𝑘∗𝑖=1(𝑞′𝑖 − 𝑞𝑖) −∑𝑁
𝑖=𝑘∗+1(𝑞𝑖 − 𝑞

′
𝑖
) = 0, and so (A.3) is greater

than or equal to 1
𝑁

∑𝑁
𝑖=1 𝑞𝑖ℎ(𝑎𝑖). □

Proof of Proposition 1: Consider an attention-adjusted centrality vector 𝑞 = (𝑞1, … , 𝑞𝑁). Lemma 4 implies 𝑞1 ∈ [1,𝑁]. Let 𝑖∗ = max {𝑖 ∶ 𝑞𝑖 > 0} and
𝑗∗ = max

{
𝑗 ∶ 𝑞𝑗 = 𝑞1

}
.

Star Network:

Suppose 𝑞1 < 𝑁. Fix a 𝛿 ∈ (0, (𝑖∗ − 1) ⋅ 𝑞𝑖∗ ).22 Consider attention-adjusted centrality vector 𝑞′ = (𝑞′1, … , 𝑞
′
𝑁
) such that 𝑞′

1
= 𝑞1 + 𝛿, 𝑞′𝑖 = 𝑞𝑖 −

𝛿

𝑖∗−1
for

𝑖 ∈ {2, … , 𝑖∗} and 𝑞′
𝑖
= 𝑞𝑖 = 0 for 𝑖 ∈ {𝑖∗ + 1, … ,𝑁}. Lemma5 implies the influencer receives a higher optimal payoffwhen the attention-adjusted centrality

vector is 𝑞′. Suppose 𝑞1 = 𝑁. If 𝑞′ ≠ 𝑞, then 𝑞′1 < 𝑞1 and 𝑞′𝑖 ≥ 𝑞𝑖 for all 𝑖 ∈ {2, … ,𝑁}. By Lemma 5, the influencer receives a lower optimal payoff under
𝑞′. Thus, a star network maximizes the influencer’s optimal payoff.23

Complete Network:

Suppose 𝑞1 > 1. By Lemma 4, 𝑗∗ < 𝑁. Therefore, there exists a 𝛿 ∈ (0,
𝑁−𝑗∗

𝑁
⋅ (𝑞𝑗∗ − 𝑞𝑗∗+1)). Consider a vector 𝑞′ such that 𝑞′𝑖 = 𝑞𝑖 − 𝛿 for 𝑖 ∈ {1, … , 𝑗

∗}

and 𝑞′
𝑖
= 𝑞𝑖 +

𝑗∗

𝑁−𝑗∗
⋅ 𝛿 for 𝑖 ∈ {𝑗∗ + 1, … ,𝑁}. The vector 𝑞′ satisfies 𝑞′1 ≥ 𝑞′2 ≥ … ≥ 𝑞′

𝑁
≥ 0, 𝑞′

𝑖
< 𝑞𝑖 for 𝑖 ∈ {1, … , 𝑗∗} and 𝑞′𝑖 > 𝑞𝑖 for 𝑖 ∈ {𝑗

∗, … ,𝑁}. By
Lemma 5A, the influencer has a lower payoff under 𝑞′. It follows that the influencer’s optimal payoff is minimized when 𝑞1 = 1.
Proof of Proposition 3: In a star network, each influencer allocates its entire budget to the most central agent.𝑀1’s payoff is 𝑏 + (1 − 2𝑏)𝑓(1, 1). In a
complete network, each agent has the same attention-adjusted centrality. Because agents also have a common bias, each influencer targets each agent
equally. The payoff to𝑀1 is 𝑏 + (1 − 2𝑏)𝑓(

1

𝑁
,
1

𝑁
).

12 The RAND Journal of Economics, 2025
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The equilibrium payoff in a complete network is greater than the equilibrium payoff in a star network whenever (1 − 2𝑏)𝑓( 1
𝑁
,
1

𝑁
) > (1 − 2𝑏)𝑓(1, 1). The

proposition follows. □

Appendix B: Attention-Adjusted Centrality

The attention-adjusted centrality vector 𝑞 differs from other commonmeasures of network influence in the literature, specifically eigenvector centrality.
Eigenvector centrality appears in Lever (2010) and governs influencer targeting decisions in his model. However, this is due to the limited ability of the
influencers’ to interact with agents: Spending has a one-time effect on agents’ initial beliefs. Thus, agents’ importance is dictated entirely by their effect
within the peer network. In my model, agents interact with influencers repeatedly, leading to the attention-adjusted centrality 𝑞 becoming the vector
of interest. Agents that are influential within the peer network do not necessarily have the same importance. However, suppose agents interact with
external sources at the same rate 𝛼. As 𝛼 approaches 0, 𝑞 approaches the span of the eigenvector centrality.

Proposition 4. Let 𝑤 be the unit left-hand eigenvector of 𝑃 associated with the eigenvalue 1. Consider any decreasing sequence
{
𝛼(𝑗)

}∞
𝑘=1 such that

lim𝑗→∞ 𝛼
(𝑗) = 0 and the corresponding attention-adjusted centrality vectors 𝑞(𝑗) = 𝛼(𝑗) ⋅ 𝑒𝑇(𝐼 − (1 − 𝛼(𝑗))𝑃)−1. Then:

lim
𝑗→∞

𝑞(𝑗)

𝑁
= 𝑤

Proof. Define𝑊 to be an 𝑁 ×𝑁 matrix where each row is equal to 𝑤. Let ||||||⋅||||||2 denote the standard norm in ℝ𝑁 . It follows that:

||||||||𝑞(𝑗)𝑁 − 𝑤
||||||||2 = 1𝑁 ||||||||𝑞(𝑗) −𝑁𝑤||||||||2 = 1𝑁 ||||||||𝛼(𝑗) ⋅ 𝑒𝑇(𝐼 − (1 − 𝛼(𝑗))𝑃)−1 − 𝑒𝑇𝑊||||||||2 (B.1)

Recognize that 𝑊
𝛼(𝑗)

=
∑∞
𝑡=0(1 − 𝛼

(𝑗))𝑡𝑊. This implies that (B.1) can be expressed as:

1

𝑁

||||||||𝛼(𝑗)𝑒𝑇
∞∑
𝑡=1
(1 − 𝛼(𝑗))𝑃𝑡 − 𝛼(𝑗)𝑒𝑇

∞∑
𝑡=0
(1 − 𝛼(𝑗))𝑡𝑊

||||||||2 (B.2)

= 1
𝑁

||||||||𝛼(𝑗)𝑒𝑇
𝐿−1∑
𝑡=0
(1 − 𝛼(𝑗))𝑡(𝑃𝑡 −𝑊) + 𝛼(𝑗)𝑒𝑇

∞∑
𝑡=𝐿
(1 − 𝛼(𝑗))𝑡(𝑃𝑡 −𝑊)

||||||||2 for any 𝐿 (B.3)

Consider any 𝜖′ and 𝜖 with 𝜖′ ∈ (0, 𝜖). Because𝑊 = lim𝑡→∞ 𝑃
𝑡 , there exists 𝐿 sufficiently large such that each element of 𝑃𝑡 is within 𝜖′ of each element

of𝑊 for 𝑡 ≥ 𝐿. Thus:

(𝐵.3) ≤ 1
𝑁

||||||||𝛼(𝑗)𝑒𝑇
𝐿−1∑
𝑡=0
(1 − 𝛼(𝑗))𝑡(𝑃𝑡 −𝑊)

||||||||2 + 1𝑁 ||||||||𝛼(𝑗)𝑒𝑇
∞∑
𝑡=𝐿
(1 − 𝛼(𝑗))𝑡(𝑃𝑡 −𝑊)

||||||||2
≤ 1
𝑁

||||||||𝛼(𝑗)𝑒𝑇
𝐿−1∑
𝑡=0
(1 − 𝛼(𝑗))𝑡(𝑃𝑡 −𝑊)

||||||||2 + (1 − 𝛼(𝑗))𝐿𝜖′
≤ 𝜖 for 𝛼(𝑗) sufficiently close to 0 □

The components of 𝑤 are the relative impact of each agent on the others when there is only peer-to-peer learning. When agents are constrained to
interact with their peers at the same rate, Proposition 4 implies there is a cutoff 𝛼̄ > 0 such that for 𝛼 < 𝛼̄, the rank ordering of the agents according to
𝑞 corresponds to that of 𝑤. For 𝛼 > 𝛼̄, these measures may diverge. Observe that as 𝛼⟶ 1− for each 𝑖,

∑∞
𝑗=0(1 − 𝛼)

𝑗𝑃𝑗 puts more weight on the early
terms. To illustrate, consider the following network and centrality measures for different values of 𝛼:
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Example 2.

As 𝛼 increases, agents 2 and 3 become more central because they are separated from agents 4 − 7 by a single edge. The probability of the influencer’s
message being received by those outside nodes indirectly from agent 1 decreases as agents pay less attention to their peers. Agent 1 is most influential
when only considering peer effects, but it influences peripheral agents through agents 2 and 3. As𝛼 increases, thesemiddlemen becomemore important.

Example 2 highlights the tension between direct and indirect targeting. In the case of the tree, there is a bottleneck effect where the root node transmits
its beliefs slowly through other agents. Thus, changes in 𝛼 will have a greater effect on the centrality measure of the root. As 𝛼 increases, it makes
targeting peripheral agents more beneficial.

14 The RAND Journal of Economics, 2025
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