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1 Introduction

Matching theory in economics began with the seminal contribution by Gale and Shapley
(1962). Ever since, the theory has advanced considerably and has been applied to an
increasing number of economic problems. Notably, it has proved useful in helping designs
of mechanisms in a variety of markets. Examples include medical match (Roth, 1984;
Roth and Peranson, 1999) and other entry-level labor markets (Roth, 1991), school choice
(Abdulkadiroğlu and Sönmez, 2003), course allocation in education (Sönmez and Ünver,
2010; Budish and Cantillon, 2012), and organ donation (Roth, Sönmez and Ünver, 2004,
2005, 2007). Application of matching theory to these and other practical problems is known
as “market design.” Although market design is often used to refer to other types of research
as well, in this article, we focus on market design as application of matching theory.

This paper describes matching theory and its applications. We begin by describing
standard models in two-sided and one-sided (object allocation) models in some detail, and
then describe economic applications. By now, there are many surveys of this literature,
most notably the celebrated work by Roth and Sotomayor (1990), and more recently by
Abdulkadiroğlu and Sönmez (2013), Roth (2008a, 2008b), Sönmez and Ünver (2009), Pathak
(2015), Kojima and Troyan (2011), Kojima (2015), and many others. Given the rich set
of existing surveys, in this article, we try to balance between the basic models and recent
applications. We also try to differentiate by choosing several specific topics which we regard
as promising for further investigation.

The rest of this paper goes as follows. Section 2 presents the standard models of two-
sided matching. In Section 3, we describe the models of one-sided matching. Section 4
discusses various applications. Section 5 concludes by discussing several future research
directions.
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2 Two-sided Matching

In two-sided matching, there are two groups of participants. Each participant may be
matched to a participant on the other side of the market (or remain unmatched), and she
has preferences over these options. Two canonical examples are college admissions and
firm-worker assignment. In the first example, students try to get into their “ideal” colleges,
and colleges seek to admit their most preferred students. In the second example, workers
look for their “dream” jobs and firms attempt to fill the openings with their desired talents.
In the presence of mutual interests and potential conflicts, of course, it is generally not
possible to completely fulfill all participants’ desires. In the face of this constraint, it would
be desirable if a procedure can help match the students (workers) with colleges (firms) in a
fair and efficient manner. That is precisely what we will take up in the current section.

On the other hand, despite their close resemblance, there is at least one notable differ-
ence between the college admissions problem and the firm-worker assignment: the terms
governing the match of a student and a college are almost always identical, so the pref-
erence of a student/college depends only on the identity of her/its partners (if we ignore
the differences in fellowship and other flexible terms). By comparison, labor contracts may
vary much, with wage differences as a prominent example.1 As such, a worker/firm not only
cares about who he/it is matched with, but also the contracting details as well. Because
of this additional complication, the firm-worker assignment is naturally more involved than
the college admissions problem.

We will begin by presenting the basic Gale-Shapley (1962) two-sided matching model
in Subsection 2.1, with the college admissions problem as the leading example. In Subsec-
tion 2.2, we discuss the matching with contracts model (Hatfield and Milgrom, 2005), with
the firm-worker assignment in mind.

2.1 Basic Two-Sided Matching Model

Adopting the language of Gale and Shapley (1962) and Roth (1985), we describe the basic
model in terms of colleges and students. However, we note that it can be applied to any
matching model where both sides of the markets have preferences and the contracting details
are standardized (e.g. medical residency matching).

There is a finite set I of students and a finite set C of colleges. A student can be
matched to at most one college, while each college c has capacity qc, i.e., the college can
be matched to at most qc students. Each student i has a strict preference �i over C ∪ {∅},
where ∅ denotes the outcome in which the student is unmatched, and each college has a
strict preference �c over sets of students 2I . For student i, we write c1 �i c2 if and only
if c1 �i c2 or c1 = c2. Similarly, for college c, we write J1 �c J2 if and only if J1 �c J2 or

1Note, however, terms may not vary substantially in some labor markets, especially in standardized
entry-level markets. In such a case, the matching model in Subsection 2.1 may be appropriate.
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J1 = J2. Note we implicitly assume a student/college only cares about his/its own match
and that indifferences do not occur.

Throughout the current subsection, we assume the preference of each college c is re-
sponsive, or the relative desirability of sets of students does not depend on the composition
of the current assignment of college c. More formally, �c is responsive if:

1. For any J ⊂ I with |J | < qc and any i ∈ I\J , (J ∪ i) �c J ⇔ i �c ∅ and

2. For any J ⊂ I with |J | < qc and any i, j ∈ I\J , (J ∪ i) �c (J ∪ j)⇔ i �c j.
2

We write the set of all strict responsive preference profiles as:

R = {(�l)l∈I∪C | �c is responsive, ∀c ∈ C}.

A matching is a function µ : I → C ∪ {∅}. For each c ∈ C, we define µ(c) = {i ∈
I|µ(i) = c}. We say that a matching µ is feasible if |µ(c)| ≤ qc for all c ∈ C. Simply
put, in a feasible matching, each college is matched with a set of students not exceeding its
capacity. For the rest of the discussion, we only look at feasible matchings and will simply
refer to them as matchings. Let M be the set of all (feasible) matchings.

As mentioned at the beginning of the section, our goal is to find a systematic proce-
dure that can help match students with colleges in a fair and efficient manner. Before
proceeding, we first make precise what we mean by “a systematic procedure” and “fair
and efficient manner.” Formally, a (direct) mechanism is a function that produces a
(random) matching (outcome) for each preference profile, or ϕ : R → ∆M. For fairness
and efficiency, one possible criterion is stability. Formally, a matching µ is individually
rational if µ(l) �l ∅, ∀l ∈ I ∪ C. A matching µ is blocked by a pair (i, c) ∈ I × C if:

1. c �i µ(i) and

2. |µ(c)| < qc and i �c ∅ or |µ(c)| = qc and i �c j for some j ∈ µ(c).

We say a matching is stable if it is individually rational and not blocked by any pair;
a mechanism is stable if it produces a stable matching for any preference profile in any
realization. Intuitively, a matching is individually rational if the assignment of each student
and college is acceptable (at least as good as being unmatched). A matching is not blocked
by any pair if whenever a student prefers a college to his current assignment, either the
student is not acceptable to the college or the college has reached its capacity and it prefers
every current student to the new student (note that we have implicitly made use of the
assumption that preferences are responsive). A matching is stable if both conditions are
satisfied. Stability is a desirable criterion for at least two reasons: to begin with, in an
unstable mechanism, a student/college or a pair may want to deviate from the proposed

2To simplify notation, we denote a singleton set {s} as s whenever there is no confusion.
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outcome, which is problematic if we require voluntary participation. In addition, stability
implies standard concepts of efficiency and fairness.

To see this, recall a matching µ is (strongly) Pareto efficient if there is no other
matching ν such that ν(l) �l µ(l) for all l ∈ I ∪ C and ν(l) �l µ(l) for some l ∈ I ∪ C.
Given a matching µ, a student i has justified envy toward student j ∈ µ(c), if c �i µ(i)
and i �c j. We say µ is justified envy-free if it is individually rational and no student
has justified envy. Roughly speaking, (strong) Pareto efficiency says the assignment of a
student can only be improved at the expense of another student or college. Justified envy-
freeness says if a student prefers the college of another student to his current matching,
then it must be the case the college ranks the other student higher. If we take (strong)
Pareto-efficiency and envy-freeness as the natural efficiency and fairness requirement, then
the following proposition shows they are both implied by stability.

Proposition 1. If a matching µ is stable, then it is both (strongly) Pareto efficient and
envy-free.

Having established a desirable property of a matching (and thus a mechanism), one
may wonder whether a stable matching can be achieved with every preference profile. Gale
and Shapley (1962) gave a positive answer with the construction of the following mecha-
nism. Since then, the mechanism and its variations have played important roles in real-life
matching markets.

(Student-proposing) Deferred Acceptance Algorithm:

• Step 1: Each student applies to his most preferred college. Each college tentatively
keeps its acceptable students up to the capacity (on hold), and reject all others.

In general, for any t = 1, 2, . . .

• Step t: Each student who is not currently on hold applies to his next preferred accept-
able college (he does not make an application if there is none). Each college considers
all new applicants, together with the students on hold, and tentatively keeps its ac-
ceptable students up to the capacity, while rejecting all others.

The algorithm terminates when there is no new application. (Clearly, it terminates in
a finite number of steps because the number of students and colleges are both finite.)

Theorem 1 (Theorem 1 in Gale and Shapley 1962). For any (strict, responsive) preference
profile, the (student-proposing) deferred acceptance algorithm gives a stable matching. In
other words, it is a stable mechanism.

Given the student-proposing deferred acceptance algorithm, one may naturally imagine
a corresponding version of the college-proposing deferred acceptance algorithm. Such a
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mechanism does exist and is also stable. In fact, the set of stable matchings is not neces-
sarily a singleton set, and the student-proposing and college-proposing deferred acceptance
algorithms can give rise to different stable matchings. Given the (potential) multiplicity
of stable matchings, one may wonder which one to implement in practice. The following
proposition suggests the answer depends on our evaluation of the relative welfare of the two
sides of the markets.

Proposition 2 (Theorem 2∗ in Roth 1985).

1. There exists a student-optimal stable matching, i.e. a stable matching that every
student likes at least as well as any other stable matching. Moreover, the student-
proposing deferred acceptance algorithm always yields the student-optimal stable match-
ing.

2. There exists a college-optimal stable matching, i.e. a stable matching that every college
likes at least as well as any other stable matching. Moreover, the college-proposing
deferred acceptance algorithm always yields the college-optimal stable matching.

3. The student-optimal stable matching is the least preferred stable matching for each col-
lege. Likewise, the college-optimal stable matching is the least preferred stable match-
ing for each student.

Roughly speaking, Proposition 2 says that despite the competition among students/colleges,
there is considerable coincidence of interests on either side of the market if we restrict to sta-
ble matchings. By comparison, the interests of the two sides of the markets are not always
aligned. In fact, they are almost opposite if we restrict our attention to stable matchings.

Another important concern for mechanisms is incentives. Apart from ease of imple-
mentation, an incentive compatible mechanism induces students and colleges to reveal their
preferences truthfully. Such a property is necessary for our fairness and efficiency criteria
to be well-grounded.3 We say a mechanism is strategy-proof if it is a weakly dominant
strategy for every player to (always) report his/her true preferences. With this definition,
we have the following result for incentive properties of the student-proposing deferred ac-
ceptance algorithm (and any stable mechanism).

Theorem 2 (Theorem 5∗ in Roth 1985). The student-proposing deferred acceptance algo-
rithm is strategy-proof for students. However, (when colleges have responsive preferences),
no stable mechanism is strategy-proof for colleges.

Simply put, Theorem 2 suggests that the student-proposing deferred acceptance algo-
rithm is “safe” to play for students: it is always optimal for students to simply report their

3Chen and Sonmez (2006) show evidence in lab experiments that strategy-proof school choice mechanisms
indeed induce true preferences more often than those without truthful revelation. Nevertheless, there is some
evidence in real-life matching markets that some agents still misreport even in strategy-proof mechanisms.
See for instance Rees-Jones (2017) and Hassidim et al. (2017).
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true preferences. The rough intuition is that because of “deferred” acceptance, a student
stands nothing to lose by applying to his most preferred (remaining) college in each step.
Furthermore, even though it is not always in the colleges’ interests to report truthfully, the
problem is not confined to the particular mechanism, but stable mechanisms in general. In
other words, incentive compatibility (on the college side) is not compatible with stability.

To see how colleges may gain by misreporting under the student-proposing deferred
acceptance algorithm, consider the following example:

Example 1: There are two students i1, i2 and two colleges c1, c2. Each college has capacity
1 (qc1 = qc2 = 1) and the preferences are as follows:4

�i1 : c1, c2 �i2 : c2, c1
�c1 : i2, i1 �c2 : i1, i2

It is easy to see the outcome of the student-proposing deferred acceptance algorithm under
the true preferences is: (

i1 i2
c1 c2

)
Now suppose college 1 misreports by stating that only student 2 is acceptable, while all
other agents continue to report their true preferences. Then, the outcome of the student-
proposing deferred acceptance algorithm under this preference profile is:(

i1 i2
c2 c1

)
Thus, college 1 strictly benefits from the misreport.

2.2 Matching with Contracts

This subsection introduces the model of “matching with contracts” due to Hatfield and
Milgrom (2005). It is a generalization of the basic model described in Section 2.1. It
also incorporates, as special cases, some other matching/auction models in the existing
literature. The primary example we have in mind is labor market matching, and so we
describe the model in terms of workers and firms. However, it can be applied in any setting
where contract terms play an important role.

There is a finite set I of workers, a finite set F of firms, and a finite set of contracts X.
Each contract x ∈ X is bilateral, so it is associated with one worker xI ∈ I and one firm
xF ∈ F . For instance, in the labor market matching model, a contract specifies a firm, a
worker, and a wage. So we have X = I×F ×W , where W is a (finite) set of possible wages.

Each worker i can sign at most one contract, and his preferences over possible contracts
(plus the outcome in which she signs no contract, i.e., the empty set ø, which we sometimes

4When denoting an agent’s preference, we list her acceptable choices in order of her preference. Similar
notation is used throughout the paper.
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refer to as the null contract) are described by the strict total order �i. We say a contract
x is acceptable for worker i if x �i ø. With workers’ preferences well-defined, we know
a worker’s choice when faced with a set of contracts. Formally, given a set of contracts
X ′ ⊂ X, define worker i’s chosen set Ci(X

′) of contracts as follows:

Ci(X
′) =

{
ø if {x ∈ X ′|xI = i, x �i ø} = ø
max�i{x ∈ X ′|xI = i} otherwise

In other words, a worker’s chosen set is simply the most preferred, acceptable contract from
those that are available. If none are acceptable, then his choice is the null contract (note
that a worker’s chosen set is either a singleton or an empty set).

On the other hand, each firm f can sign multiple contracts, so its preferences are over
sets of contracts. Let firm f ’s preference be described by �f , a strict total order over 2X .
Given a set of contracts X ′ ⊂ X, we can similarly define firm f ’s chosen set Cf (X ′). Notice
that a firm can sign at most one contract with any given worker, so for all f ∈ F,X ′ ⊂ X,
and x, x′ ∈ Cf (X ′), if x 6= x′, then xI 6= x′I .

Given X ′ ⊂ X and the chosen set of each worker, we can define the contracts chosen by
the worker side as CI(X ′) = ∪i∈ICi(X

′). The remaining offers in X ′ are the rejected set by
the worker side: RI(X ′) = X ′−CI(X ′). Similarly, the chosen and rejected sets by the firm
side are denoted by CF (X ′) = ∪f∈FCf (X ′) and RF (X ′) = X ′ − CF (X ′).

If we imagine some sort of stable matchings similar to the one in the basic model, the
chosen and rejected sets will prove useful both in the definition and in actually finding them.
Intuitively, given a starting set of contracts, the rejected sets (by either side) cannot be in
any stable allocation, so we know, at the very least, a stable allocation is a fixed point of
the “chosen set (by either side)” operator. Moreover, we will need to require that there
is no coalition of workers and firms who prefer to sign contracts among themselves rather
than follow the prescribed allocation.

To make this precise, we present the following definition of a stable allocation: a set of
contracts X ′ ∈ X is a stable allocation if:

1. CI(X ′) = CF (X ′) = X ′ and

2. There exists no firm f and a set of contracts X ′′ 6= Cf (X ′) such that X ′′ = Cf (X ′ ∪
X ′′) ⊂ CI(X ′ ∪X ′′).

Intuitively, the first requirement corresponds to “individual rationality”. The second
requirement says there cannot be an alternative set of contracts such that a particular
firm and its matched workers all prefer, which is similar to the “no blocking” condition we
discussed in the basic model.

In order to guarantee the existence of a stable allocation, we need an additional re-
striction on the preferences of firms: substitutability. Elements of a set of contracts X
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are substitutes for firm f if ∀X ′ ⊂ X ′′ ⊂ X, we have Rf (X ′) ⊂ Rf (X ′′). In words, the
restriction says if a particular firm is faced with a larger choice set, it has to reject (weakly)
more contracts.

Now we are ready to present the existence result, based on an iterative algorithm. As
it turns out, the iteration we shall apply is on the product set X × X instead of the set
of all contracts X. Similar to most iteration procedures, we hope to obtain monotonicity.
For monotonicity to be well-defined, a partial order on X × X is needed. We define it as
follows: given XI , X

′
I , XF , X

′
F ⊂ X, ((XI , XF ) ≥ (X ′I , X

′
F ))⇔ (X ′I ⊂ XI and XF ⊂ X ′F ).

With the order ≥, and given a starting set (XI , XF ), we can define the generalized
deferred acceptance algorithm as the iterated applications of the function F : X×X →
X ×X, defined by:

F1(X
′) = X −RF (X ′)

F2(X
′) = X −RI(X ′)

F (XI , XF ) = (F1(XF ), F2(F1(XI))).

With the generalized deferred acceptance algorithm in hand, the following theorem and
proposition tell us how they can direct us to find stable allocations and shed light on the
tradeoff in welfare between the workers and firms.

Theorem 3 (Theorem 3 in Hatfield and Milgrom 2005). Suppose elements of X are sub-
stitutes for all the firms. Then,

1. The set of fixed points of F on X × X includes a smallest element (
¯
XI ,

¯
XF ) and a

largest element (X̄I , X̄F );

2. Starting at (XI , XF ) = (X, ø), the generalized deferred acceptance algorithm con-
verges monotonically to the largest fixed point (X̄I , X̄F ) = sup{(X ′, X ′′)|F (X ′, X ′′) ≥
(X ′, X ′′)}; and

3. Starting at (XI , XF ) = (ø, X), the generalized deferred acceptance algorithm con-
verges monotonically to the smallest fixed point (

¯
XI ,

¯
XF ) = inf{(X ′, X ′′)|F (X ′, X ′′) ≤

(X ′, X ′′)}.

Proposition 3 (Theorem 4 in Hatfield and Milgrom 2005). Suppose elements of X are
substitutes for all the firms, then X̄I∩X̄F and

¯
XI∩

¯
XF are both stable allocations. Moreover,

every worker likes X̄I ∩ X̄F at least as well as any other stable allocation, and every firm
likes any other stable allocation at least as well as X̄I ∩ X̄F . Similarly, every firm likes

¯
XI ∩

¯
XF at least as well as any other stable allocation and every worker likes any other

stable allocation at least as well as
¯
XI ∩

¯
XF .

To understand Theorem 3 and Proposition 3, consider first the generalized deferred
acceptance algorithm starting with the contract tuple (X, ø). Here, workers first choose
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from the set of all available contracts, which is very similar to the student-proposing de-
ferred acceptance algorithm (where students first propose to their most preferred colleges).
Accordingly, we land at the worker-optimal stable allocation. Similarly, the generalized de-
ferred acceptance algorithm starting with the contract tuple (ø, X) gives us the firm-optimal
stable allocation. For Proposition 3, the first part of why X̄I ∩ X̄F and

¯
XI ∩

¯
XF are stable

needs some additional reasoning (which we shall not give here), but the second part incor-
porates the insight from the basic model: if we focus on stable allocations, there is little
conflict of interests among agents on the same side of the market, but there is substantial
conflict of interests between the worker side and the firm side.

Similar to the basic model, incentives are also an important concern in the matching
with contracts model, but we shall omit it here due to space constraint.

3 One-sided Matching

Similar to two-sided matching, in a one-sided matching problem, there are still two groups.
Nevertheless, one side has no (intrinsic) preference for the other side and are simply “objects
to be consumed”. Two typical examples are house allocation and kidney exchange. In
each problem, each individual tries to obtain her most preferred object, and if she has an
initial endowment, may obtain her desired object through exchange. Our goal is to find a
systematic procedure to allocate the houses (kidneys) to tenants (patients) in a fair and
efficient way.

Even if we ignore the contracting details such as side payments (as in two-sided match-
ing), complications arise depending on the structure of initial endowments. The first case
we consider is pure exchange: each individual brings an item to the market and tries to
achieve an efficient outcome that everyone is willing to accept. The next case is pure allo-
cation: nobody has anything a priori, and there are a number of items to be allocated to
the individuals. A more involved case is allocation with existing owners: some individuals
come to the market with an item while others do not, and there are new items available
for allocation. In this situation, we want to find an allocation that appeals to both the
existing owners and the newcomers. We will present the three different models in Subsec-
tions 3.1, 3.2 and 3.3. To highlight the similarities and differences, we describe all three
models in the language of housing markets.

3.1 House Exchange

As the name suggests, in a house exchange problem, each individual is initially endowed
with a house and there is no new house available. Thus, the only possible re-allocation is
through exchange between the agents. The model was first described by Shapley and Scarf
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(1974).5

There is a finite set H of houses and a finite set I of house-owners. Initially, individual
i is the owner of house hi, with |H| = |I|. Therefore, everyone is endowed with exactly
one house to begin with, and there is no leftover house. Each agent i demands exactly one
house, and has a strict preference �i over H (we assume all houses are acceptable, though
it is enough to assume agent i’s initial endowment hi is acceptable). Similar to two-sided
matching, we write h1 �i h2 if and only if h1 �i h2 or h1 = h2. We also implicitly assume
a house-owner only cares about her own assignment and indifferences between houses do
not occur. We write the set of all strict preference profiles as R = {(�i)i∈I}. A matching
is a one-to-one correspondence µ : I → H (or equivalently represented as a permutation
on {1, 2, . . . , |I|}). Note that there is no feasibility concern once we restrict to one-to-one
correspondences. LetM be the set of all matchings. A (direct) mechanism in the one-sided
matching model is a function ϕ : R → ∆M.

Given one-sided preference and no priority, one possible criterion in the current setup
is the (strong) core standard in cooperative games. Given (�i)i∈I , recall a matching µ is
a (strong) core allocation if there is no other matching µ′ ∈ M and a subset S ⊂ I such
that:

1. µ′(i) ∈ {hj}j∈S ,∀i ∈ S;

2. µ′(i) �i µ(i), ∀i ∈ S and

3. µ′(j) �j µ(j) for some j ∈ S.

In words, a matching is a strong core allocation if no sub-group can come up with an
allocation using only their endowments that every group member weakly prefers to the
original allocation, and some group member strictly prefers. Similar to stability, (strong)
core reflects the idea of voluntary participation. Moreover, if we take S to be the singleton
set i and the whole set I, we see the definition implies individual rationality and strong
Pareto efficiency.6

Proposition 4. If a matching µ is a (strong) core allocation, then it is both individually
rational and (strongly) Pareto efficient.

Notice that with one-sided preference and no priority list, fairness is not too much of
a concern once we respect individual rationality. Given the desirable criterion, our goal is
to find a strong core allocation (if any) for any preference profile. Fortunately, David Gale
(described in Shapley and Scarf (1974)) gave a satisfactory answer with the construction of
the top trading cycle algorithm.

5To better conform with the two-sided matching model, our notation will be different from theirs. How-
ever, the model and the main results follow theirs.

6Here the outside option of being unmatched is modified to be the initial endowment in the definition of
individual rationality.
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Top Trading Cycle Algorithm:

• Step 1: Each agent points to her most preferred house and each house points to its
owner. Remove all agents and houses in a cycle (at least one cycle exists). For any
agent removed, assign her the house she points to.

In general, for any t = 1, 2, . . .

• Step t: Each remaining agent points to her most preferred house left and each house
points to its owner (who must still be in the mechanism). Remove all agents and
houses in a cycle (at least one cycle exists). For any agent removed, assign her the
house she points to.

The algorithm terminates when there is no agent or house left. (An equal number
(greater than or equal to one) of agents and houses are removed in each step, so the mech-
anism must terminate in a finite number of steps.)

Theorem 4 (Theorem in Shapley and Scarf 1974 and Theorem 2 in Roth and Postlewaite
1977). For any strict preference profile, the top trading cycle algorithm gives the unique
strong core allocation.

Intuitively, the top trading cycle gives a strong core allocation roughly because (given
the cycles removed earlier), the group of agents removed in each step receive their best
available houses.

As in two-sided markets, another important concern in house exchange is incentives.
After all, it is only with truthful revelation that the strong core requirement has important
welfare implications. Fortunately, the following theorem says the top trading cycle algorithm
has good incentive properties.

Theorem 5 (Theorem in Roth 1982). The top trading cycle mechanism is strategy-proof.

To obtain intuition for Theorem 5, recall truthful revelation is a weakly dominant strat-
egy for students in the student-proposing deferred acceptance algorithm. The insight here
is somewhat similar: a house will not leave the market unless its (initial) owner gets her
most preferred (remaining) house. Therefore, an agent will not “lose” a house unless she
cannot get it anyway. Hence, she may as well report her most preferred (remaining) house
in each step.

Given the relative complexity of the top trading cycle algorithm, we end the subsection
with an example:

Example 2: There are four house-owners i1, i2, i3, i4, with their respective (initial) houses
h1, h2, h3, h4. The preferences of the house-owners are as follows:

�i1 : h2, h3, h4, h1 �i2 : h2, h1, h3, h4
�i3 : h2, h1, h3, h4 �i4 : h2, h1, h3, h4
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Step 1: All agents point to h2 and the houses point to their respective owners. There is
a one-cycle: i2 is assigned h2.

Step 2: i1 points to h3, i3 and i4 point to h1 and the three remaining houses point to
their respective owners. There is a two-cycle: i1 is assigned h3 and i3 is assigned h1.

Step 3: i4 points to h4, which points backwards. There is a one-cycle: i4 is assigned h4.

It follows that the outcome of the top trading cycle algorithm is:(
i1 i2 i3 i4
h3 h2 h1 h4

)

3.2 House Allocation with No Existing Owner

In a pure house allocation problem, no agent has a house to begin with, and there are
a number of houses to be allocated. A similar problem was first studied by Hylland and
Zeckhauser (1979). The model we present here is a simplified version of theirs.

There is finite set H of empty houses to be allocated among a finite set I of agents. Each
agent i demands exactly one house, and has a strict preference �i over H. (We assume
all houses are acceptable.) It may be the case that |H| > |I|, |H| < |I| or |H| = |I|, so
the houses may be in over-supply, under-supply or just balances with the number of agents.
Similar to the house exchange problem, we write h1 �i h2 if and only if h1 �i h2 or h1 = h2.
Implicit in the assumption is that an agent only cares about her own assignment and that
indifferences between houses do not occur. We write the set of all strict preference profiles
as R = {(�i)i∈I}. A matching is a one-to-one function µ : I → H ∪ ∅.7 Let M be the set
of all matchings. A (direct) mechanism is a function ϕ : R → ∆M.

Given the lack of existing owners, the primary criterion here is (strong) Pareto effi-
ciency. Nevertheless, randomization may be particularly useful in the current setup if there
are fairness concerns. Once we introduce randomization, at least two versions of (strong)
Pareto efficiency arises. A mechanism is ex-ante Pareto efficient if its assignment of
lotteries is Pareto efficient relative to agents’ preferences over lotteries. By comparison,
a mechanism is ex-post Pareto efficient if its final allocation is Pareto efficient given
any strict preference profile. It can be readily shown that ex-ante Pareto efficiency implies
ex-post Pareto efficiency but not vice versa.8

Before introducing a desirable algorithm, one more definition is needed: a (rank) or-
dering is a permutation of I, or a one-to-one correspondence σ : {1, 2, . . . , |I|} → I. The
following mechanism and its variations are widely used in real-life house allocation problems:

7As the number of houses and agents need not balance, in general, a matching here is not bijective and
cannot be equivalently represented as a permutation on {1, 2, . . . , |I|}.

8Ex-ante Pareto efficiency implies ex-post Pareto efficiency because if any final allocation resulting from a
lottery is not ex-post Pareto efficient, then the lottery can be improved by replacing the particular allocation
with a more efficient one, implying that the lottery is not ex-ante Pareto efficient.
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Serial Dictatorship Algorithm:

• Step 0: Fix a rank ordering σ.

• Step 1: Assign σ(1) her most preferred house.

In general, for any t = 1, 2, . . .

• Step t: Assign σ(t) her most preferred remaining house.

The algorithm terminates when there is no agent or house left. If there are still agents
left, then they are not assigned a house. (Given each step reduces the number of agents
and houses both by 1, the algorithm must terminate in a finite number of steps.)

Intuitively, the mechanism works as if an agent is the dictator when it is her turn to
choose. At that time, she picks her most preferred house out of those available (note that
the agent does not care about the allocation of any other agent). As mentioned earlier,
randomization is often introduced when implementing the mechanism in practice. This can
be done by modifying Step 0 as follows:

• Step 0: Pick a rank ordering σ uniformly at random from the set of all rank orderings.

The resulting mechanism is called random serial dictatorship. The following theorem
gives the desirable properties of random serial dictatorship.

Theorem 6 (Variation of Lemma 1 in Abdulkadiroğlu and Sönmez 1998). The random
serial dictatorship algorithm is ex-post Pareto efficient. Moreover, two agents with the
same preferences receive the same random allocation to each other.

In other words, the random serial dictatorship mechanism has decent fairness and ef-
ficiency properties. Intuitively, ex-post efficiency is achieved because an agent is made as
well off as possible given the allocation of the agents in earlier steps. (This is true in every
realization, so “ex-post” with randomization.) The second part of this theorem describes a
fairness property of this mechanism, and it follows immediately from uniform randomization
over rank orderings used in Step 0’ of the algorithm.

The following theorem says random serial dictatorship also has good incentive properties.

Theorem 7. The random serial dictatorship mechanism is strategy-proof.

The main insight of Theorem 7 is that each agent is essentially the dictator when it
comes to her turn, so she cannot gain by misreporting.

Unfortunately, even random serial dictatorship is not without its own problems. For one,
the mechanism is not ex-ante Pareto efficient. Some research has been done to tackle the
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problem. Nevertheless, it is found that ex-ante Pareto efficiency and fairness (as defined
in Theorem 6) are incompatible with strategy-proofness. (See Bogomolnaia and Moulin
(2001).) Partly because of this, random serial dictatorship is still probably among the most
popular mechanisms when it comes to real-life object allocation.

3.3 House Allocation with Existing Owners

Given the discussions of Subsections 3.1 and 3.2, one may imagine a situation where existing
house-owners and new entrants coexist. A few more specific real-life examples are college
dorm allocations and office assignment. The problem was first studied by Abdulkadiroğlu
and Sönmez (1999).

There are a finite set of houses H and a finite set of agents I. Of all the houses in H,
a subset HO are currently occupied, each belonging to a distinct member of the existing
house-owners IE ⊂ I (so |HO| = |IE |). The remaining houses HV = H −HO are currently
vacant and can be freely allocated. The remaining agents IN = I − IE are new entrants
and do not have a house. Each agent i ∈ I demands exactly one house and has a strict
preference �i over H. (We assume for simplicity that all houses are acceptable for all the
agents.) We write h1 �i h2 if and only if h1 �i h2 or h1 = h2. Implicit in the assumption is
that an agent only cares about her own assignment and that indifferences between houses
do not occur. We write the set of all strict preference profiles as R = {(�i)i∈I}. A matching
is a one-to-one function µ : I → H ∪ ∅.9 Let M be the set of all matchings. A (direct)
mechanism is a function ϕ : R → ∆M.

Given the presence of both existing house-owners and new entrants, one possible desir-
able criterion of a matching is Pareto efficiency. In light of the top trading cycles and serial
dictatorship algorithms of previous subsections, we have the following two generalizations
as natural candidates. Indeed, Abdulkadiroğlu and Sönmez (1999) show for any preference
profile, outcomes from these two mechanisms coincide and satisfy Pareto efficiency.

(Generalized) Top Trading Cycles Algorithm:

• Step 0: Fix a rank ordering σ.

• Step 1: Define the set of available houses to be the vacant houses (HV ). Each agent
points to her most preferred house. Each occupied house points to its owner, and
each available house points to σ(1). Remove all agents and houses in a cycle (at least
one cycle exists). For any agent removed, assign her the house she points to.

In general, for any t = 1, 2, . . .

• Step t: Update the set of available houses to be the current vacant houses. Each
remaining agent points to her most preferred house left. Each remaining occupied

9Similar to the pure house allocation problem, a matching here need not be bijective.

14



house points to its owner, and each available house points to the remaining agent
with the highest priority (σ(j), where j is the smallest among the remaining agents).
Remove all agents and houses in a cycle (at least one cycle exists). For any agent
removed, assign her the house she points to.

The algorithm terminates when there is no agent or house left. If there are still agents
left, then they are not assigned a house. Since each step reduces the number of agents and
houses both by at least 1, the algorithm must terminate in a finite number of steps.

You Request My House-I Get Your Turn (YRMH-IGYT) Algorithm:

• Step 0: Fix a rank ordering σ.

• Step 1: Agent σ(1) points to her most preferred house. If the house she points to is
vacant (in HV ) or her own house, she is assigned the house she points to. Otherwise,
modify σ so that the owner is at the top of the list (the other relative orderings
unchanged) and proceed to the next step.

In general, for any t = 1, 2, . . .

• Step t: The remaining agent with the highest priority (σ(j), where j is the smallest
among the remaining agents) points to her most preferred house. If the house she
points to is currently vacant (which may or may not be in HV ) or her own house, she
is assigned the house she points to. If the house she points to is occupied by another
remaining agent, modify σ so that the owner is at the top of the list (the other relative
orderings unchanged). At this point, if a loop forms (no house is a assigned in the
process where the rank ordering is back to an earlier one), every agent is assigned the
house she points to. Otherwise, proceed to the next step.

The algorithm terminates when there is no agent or house left. If there are still agents
left, then they are not assigned a house. (It can be shown the algorithm terminates in a
finite number of steps.)

Intuitively, the (generalized) top trading cycles algorithm is a direct generalization of
top trading cycles in Section 3.1, with all remaining vacant houses pointing to the remaining
agent with the highest priority. On the other hand, YRMH-IGYT is a direct generalization
of serial dictatorship in Section 3.2, with the added twist that the owner is granted the
opportunity to choose before her house is gone.

Theorem 8 (Theorem 3 in Abdulkadiroğlu and Sönmez 1999). Given a rank ordering σ
and for any (strict) preference profile, the YRMH-IGYT algorithm yields the same matching
as the generalized top trading cycles algorithm.

Theorem 9 (Propositions 1 and 2 in Abdulkadiroğlu and Sönmez 1999). Given a rank
ordering σ and for any (strict) preference profile, the matching given by YRMH-IGYT and
generalized top trading cycles algorithms is strongly Pareto efficient.
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Moreover, the following theorem reveals that incentives do not pose a problem either.

Theorem 10 (Theorem 1 in Abdulkadiroğlu and Sönmez 1999). For any rank ordering σ,
both the YRMH-IGYT and the generalized top trading cycles algorithms are strategy-proof.

Given the close relationships, the intuitions of Theorems 9 and 10 are very similar to the
counterparts of top trading cycles and serial dictatorship algorithms. (Theorems 4 through
7)

To illustrate the two algorithms and the main insights of Theorem 8, we conclude the
subsection with an example.

Example 3: There are four agents and three houses. Agents i1 and i2 are current house-
owners, with their respective houses h1 and h2. Agents i3 and i4 are new entrants. House
h3 is currently available. There preferences of the agents are as follows:

�i1 : h3, h2, h1 �i2 ,�i3 ,�i4 : h1, h3, h2

Fix the rank ordering σ = (3, 4, 1, 2).

Generalized Top Trading Cycles:

Step 1: i1 points h3, and the remaining agents point to h1. h1 points to i1, h2 points to
i2 and h3 points to i3. There is a two-cycle: i1 is assigned h3 and i3 is assigned h1.

Step 2: i2 and i4 both point to h2 and h2 points to i2. There is a one-cycle: i2 is assigned
h2.

It follows that the outcome of the generalized top trading cycle algorithm is:(
i1 i2 i3 i4
h3 h2 h1 ∅

)
YRMH-IGYT:

Step 1: i3 points to h1, which is currently occupied. The ranking ordering σ is modified
to (1, 3, 4, 2).

Step 2: i1 points to h3, which is currently vacant and i1 is assigned h3.

Step 3: i3 points to h1, which is currently vacant and i3 is assigned h1.

Step 4: i4 points to h2, which is currently occupied. The ranking ordering σ is modified
to (1, 3, 2, 4).

Step 5: i2 points to h2, which is her own house and i2 is assigned h2.

It follows that the outcome of the YRMH-IGYT algorithm is also:(
i1 i2 i3 i4
h3 h2 h1 ∅

)
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4 Applications

The theories described in the previous sections have found applications in a wide variety of
areas. While we are not able to survey all of them extensively, we have selected some of the
most prominent examples in order to highlight how the theory can be utilized. We begin
by discussing the following topics.

1. Medical Residency Matching (most closely related to the model in Subsection 2.1)

2. Kidney Exchange (most closely related to the model in Subsection 3.3)

3. School Choice (most closely related to the models in Subsections 2.1 and 3.3)

Then, building on an understanding of the problems encountered when applying the tools
to the situations above, we transition to a relatively new area of matching theory called
“matching with constraints”.

4.1 Medical Residency Matching

Among the most common applications of two-sided matching algorithms is the medical
residency programs. In 2016, roughly 43,000 medical school graduates registered for the
National Resident Match Program (NRMP), where students are matched to teaching hos-
pitals through a variant of a deferred acceptance algorithm.10 This service has been in
operation since 1952 and its longevity is ascribed to the fact that the matchings produced
are stable (Roth, 1984; Roth and Sotomayor, 1990).

What makes NRMP’s matching problem complex, though, is the existence of “couples”.
While some students apply independently and rank their preferences accordingly, individuals
who have a significant other in the residency match program are allowed to apply together
as couples so they can work in areas close to one another. In this context, stability requires
there be no coalition of students and hospitals who prefer to match among themselves than
follow the prescribed matching.11 The presence of couples who submit joint preference lists
complicates the problem significantly as stability is not guaranteed. Take the following
example (from Roth, 1984):

Example 4: There are four medical school graduates i1, i2, i3, i4 and four hospitals h1, h2, h3, h4
each with capacity 1 (qh1 = qh2 = qh3 = qh4 = 1). (i1, i2) and (i3, i4) are couples with prefer-
ences over ordered pairs of hospitals. The exact preferences of the couples and the hospitals
are as follows:

10For more detailed statistics, one can visit http://www.nrmp.org/match-data/main-residency-match-
data/.

11The main difference of this definition from the one in the basic model of Subsection 2.1 is that we
consider a coalition composed of a couple of doctors and two hospitals each of which seeks to match with a
member of the couple. See Roth (1984) for detail.
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�(i1,i2): (h1, h2), (h4, h1), (h4, h3), (h4, h2), (h1, h4), (h1, h3), (h3, h4), (h3, h1), (h3, h2), (h2, h3), (h2, h4), (h2, h1)

�(i3,i4): (h4, h2), (h4, h3), (h4, h1), (h3, h1), (h3, h1), (h3, h2), (h3, h4), (h2, h1), (h2, h3), (h1, h2), (h1, h4), (h1, h3)

�h1 : i4, i2, i1, i3
�h2 : i4, i3, i2, i1
�h3 : i2, i3, i1, i4
�h4 : i2, i4, i1, i3

It is straightforward, if tedious, to check that no stable matching exists in this example.
Given that an increasing number of medical students marry other medical students, it
would seem then that finding a stable matching for NRMP would be impossible. Even
determining, in a given instance, whether a stable matching exists is a computationally hard
problem.12 As a result, to replace the original method, Roth and Peranson (1999) proposed
a heuristic modification of the deferred acceptance algorithm in place to accommodate
couples’ preferences. Although this algorithm is not guaranteed to always produce a match
that is stable with respect to the reported preferences, it has done so in almost all instances.

Why does the algorithm in NRMP find a stable matching despite the theoretical possibil-
ity of nonexistence? Kojima et al. (2013) show that in a setting where applicant preferences
are drawn independently from a distribution, as the size of the market increases and the
proportion of couples approaches 0, the Roth and Peranson algorithm terminates in a stable
matching with high probability. Thus, one of the reasons the NRMP algorithm finds stable
matchings in most cases may be because the size of NRMP is large while the proportion of
couples in the market is small, roughly between 5% and 10%. By contrast, Biro and Kljin
(2013) and Ashlagi, Braverman and Hassidim (2014) have shown, in separate settings, that
as the proportion of couples increases, this algorithm frequently fails to terminate in a stable
matching. This may be important given that residency matching is not the only environ-
ment with a “couples” issue. In other such settings, couples could make up much more of
the market (Biro and Kljin (2013) provide the example of assigning high school teachers in
Hungary to majors, where almost all teachers need to be assigned to two majors; in this
setting, the percentage of “couples” is nearly 100%).

Given these difficulties in the “couples” problem, Nguyen and Vohra (2017) propose an
alternative approach. They allow for perturbations of hospital capacities to find a “nearby”
instance of the matching problem that is guaranteed to have a stable matching. They find
that the necessary perturbations are small, especially when hospital/school/firm capacities
are large. Specifically, given capacities qh for each hospital h, there is a redistribution of the
slots, q′h, satisfying |qh− q′h| ≤ 2 for all hospitals h and

∑
qh ≤

∑
q′h ≤

∑
qh + 4. Thus, the

perturbations change the capacity of each individual hospital by at most 2, and increase

12More precisely, this problem is in the class of “NP-hard” problems. NP-hardness is a notion in compu-
tational complexity theory describing the complexity of computation, which we will not describe in detail
here.
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the total number of positions in hospitals by no more than 4 while never decreasing it.13

The complication surrounding matching with couples turns out to be a specific instance
of a more general issue economists have sought to understand: matching with complemen-
tarities. In two-sided matching markets, substitutability of agent preferences (see Section
2.2), i.e., the lack of complementarity, is “necessary” for guaranteeing the existence of a
stable matching.14 The existence of couples leads to a violation of substitutability because
a pair of positions close to each other works as complements for the couple. Recent research
by Che, Kim, and Kojima (2017) and Azevedo and Hatfield (2017) examine matching with
complementarities in large markets settings with a continuum of agents. They have found
positive results describing sufficient conditions for the existence of stable matchings.

4.2 Kidney Exchange

The application of matching theory to kidney exchange has been discussed often and is
quite thorough, so we will be relatively brief in our exposition. For an extensive survey,
we refer the reader to Sönmez and Ünver (2011). In the kidney “market” (using the term
loosely), the National Organ Transplant Act of 1984 made it illegal to buy or sell a kidney
in the US. Similar legal prohibitions are nearly universal around the globe. Thus, donation
is the only viable option for kidney transplantation for most patients.

The initial foundational contribution to kidney exchange came with Roth, Sönmez, and
Ünver (2004). They used a variation of the Shapley-Scarf house exchange model (Section
3.1) to represent the kidney-exchange market. In their model, agents enter in pairs composed
of a patient and his potential donor. Applying the top trading cycles (TTC) mechanism
where potential donors substitute “houses” of the original Shapley-Scarf model, one can
produce a matching between donors and patients in a Pareto-efficient and strategy-proof
way.

The way economists model kidney exchange has progressed as we now know many ways
in which the assumptions in the original 2004 paper do not seem to be the best represen-
tation of the real kidney market. As economists have advanced into the area of matching
under general constraints and dynamic matching, they have attempted to employ other
mechanisms different from TTC. For instance, because all transplantations in any kidney
exchange need to be carried out simultaneously, long cycles that could be conducted using
the TTC mechanism might not be feasible in practice. Roth, Sönmez, and Ünver (2005)
provided strategy-proof, constrained-efficient mechanisms of kidney exchange where only
pairwise exchanges are permitted. They showed that finding a constrained-efficient match-

13How the authors proceed from the setup is notable as they approach the problem from a linear pro-
gramming perspective. Formulating the matching problem as a linear program and applying the celebrated
Scarf’s lemma, they find a random matching that satisfies a notion of stability. They then use an iterative
rounding method to find an actual matching (corresponding to a 0 − 1 solution) such that the resulting
matching satisfies stabilitiy. Such rounding corresponds to the perturbation of the capacities.

14See Hatfield and Kojima (2008) and Sönmez and Ünver (2010) for formal statements.
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ing in their model relates to the cardinality matching problem discussed in the graph theory
literature.15 In a 2007 paper, these same authors showed that under certain conditions on
kidney supply and demand levels that could normally be expected, full efficiency can be
extracted by using exchanges that involve no more than four pairs.

In the papers discussed above, agents and the market itself are static. What if the
exchange pool changes over time? Should we conduct exchanges immediately, or if there
is no urgency, is it more efficient to wait? These issues are not addressed formally in the
aforementioned papers. Ünver (2010) tackles the question of how to conduct barter ex-
changes in a centralized mechanism when the agent pool evolves over time: he characterizes
the efficient two-way and multi-way exchange mechanisms that maximize total exchange
surplus. The study of dynamic matching environments has attracted the interest of not
only economists but computer scientists and operation research specialists as well. Notable
contributions include Anderson et al. (2015) and Akbarpour et al. (2016). There are still
many questions left to be addressed, which makes the kidney exchange market one of the
great interests amongst researchers and practitioners today.

4.3 School Choice

The third prominent area matching theory is applied to is that of school choice and student
assignment policy. School choice has become one of the most important and contentious
debates in modern education policy. School Choice is a policy that allows parents the
opportunity to choose the school their child will attend. Traditionally, children are assigned
to public schools according to where they live. Wealthy parents already have school choice,
because they can enroll their children in private schools or have the ability to move to a
different district entirely. Supporters have argued that school choice helps lower income
families by providing them the freedom to send their children to different schools within
and across districts. In addition, the increased competition schools face under school choice
should incentivize them to increase their quality.16 Since it is not possible to assign each
student to her top choice school, a central issue in school choice is the design of a student
assignment mechanism. One of the first to rigorously and formally tackle this issue with
matching theory is Abdulkadiroğlu and Sönmez (2003). The model they propose, which
has been regarded as the canonical model, consists of a set of students and schools where,

1. Each student i has a preference relation �i over the schools and

2. Each school c has capacity qc and priority ordering �c over the students.

One of the reasons we refer to the school’s ordering as a priority ordering is because
in some school choice programs, orderings are given exogenously (mandated by law for

15In addition, the 2005 paper assumed that each patient is indifferent among all kidneys that are compatible
to her, based on certain medical evidence.

16For a more extensive survey on empirical and theoretical literature around school choice, see Pathak
(2011).

20



example). Pathak (2011) describes a variety of orderings in different districts as follows:
“In Boston’s school choice plan, for instance, elementary school applicants obtain walk-zone
priority if they reside within 1 mile of the school. In other districts, schools construct an
ordering of students, as in two-sided problems. In Chicago, for instance, students applying
for admissions to selective high schools take an admissions test.”17 When evaluating a
matching in this setting, two notions are of primary interest: Pareto efficiency and stability.
Stability is defined in the standard manner as in Subsection 2.1, while Pareto efficiency
only considers students’ allocations and does not take into account the schools’ priority
ordering.18 Abdulkadirog̈lu and Sönmez (2003) compare three mechanisms: the student-
proposing deferred acceptance algorithm, an adaptation of the top trading cycles mechanism
(referred to as TTC in this subsection), and the Boston mechanism.

As the deferred acceptance mechanism is familiar to the reader by now, we describe the
other two mechanisms. We start with the Boston mechanism, which, as its name suggests,
was in use in school choice programs in the city of Boston (before being replaced by the
deferred acceptance algorithm):

• Step 0: Each school orders students by priority block.19 Within each block, students
are ordered via a lottery system.

• Step 1: In this step, only the first choices of the students are considered. For each
school, consider the students who have listed it as their first choice and assign seats
of the school to these students one at a time following their priority order until either
there is no seat left or there is no student left who has listed it as his first choice.

In general, for any t = 1, 2, . . .

• Step t: In this step, only the tth choices of the students are considered. For each
school, consider the students who have listed it as their tth choice and assign seats of
the school to these students one at a time following their priority order until either
there is no seat left or there is no student left who has listed it as his tth choice.

In Boston, the Boston mechanism was originally implemented in July, 1999 but was
abandoned in 2005. One of the central reasons it was abandoned is that it is not strategy-
proof for students, i.e., families have an incentive to strategically misreport their preferences.
Variations of this mechanism, however, are common in many other school districts.

17Later, Boston’s school choice plan implemented a reform which eliminated the use of walk-zone priority.
18As the literature has grown and evolved, generalizations of the notion of stability have been discussed,

which we will examine in Section 4.4.
19In Boston, first priority consisted of students who lived in a proximal neighborhood and had a sibling

that attended the school. The second tier consisted of students with a sibling at the school. Third priority
is of the students who live in the “relevant” area. Finally, the remaining students are grouped within the
last priority block.
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The next procedure presented by Abdulkadirog̈lu and Sönmez (2003) is the TTC mech-
anism, which is implemented in the following manner:20

• Step 1: Assign a counter for each school which keeps track of how many seats are
still available at the school. Initially set the counters equal to the capacities of the
schools. Each student points to her favorite school under her announced preferences.
Each school points to the student who has the highest priority for the school. Since
the number of students and schools are finite, there is at least one cycle. Moreover,
each school can be part of at most one cycle. Similarly, each student can be part of
at most one cycle. Every student in a cycle is assigned a seat at the school she points
to and is removed. The counter of each school in a cycle is reduced by one and if it
reduces to zero, the school is also removed. The counters of the schools not in a cycle
remain the same.

In general, for any t = 1, 2, . . .

• Step t: Each remaining student points to her favorite school among the remaining
schools and each remaining school points to the student with highest priority among
the remaining students. There is at least one-cycle. Every student in a cycle is
assigned a seat at the school that she points to and is removed. The counter of each
school in a cycle is reduced by one and if it reduces to zero the school is also removed.

This algorithm is very similar to the top trading cycles mechanisms described in Sub-
sections 3.1 and 3.3, except that agents are not initially endowed with any good. In this
adaptation, students are essentially swapping priority orderings with each other. Note that
if every school has the same priority ordering, this mechanism reduces to serial dictatorship
where the rank ordering is determined by the priority ranking.

Some of the main properties of TTC are different from those of the deferred acceptance
mechanism although both mechanisms are strategy-proof. The student-proposing deferred
acceptance mechanism is stable, but the resulting outcome is not necessarily Pareto efficient
for students, while the top trading cycles mechanism is not stable but produces a Pareto
efficient outcome for students. Whether efficiency or stability is more important is a question
that may be an important determinant for the choice of the mechanism. Also, it is then
natural to ask whether one can construct an efficient, strategy-proof mechanism which also
produces a stable outcome whenever it exists. Kesten (2010) shows that this is impossible.

Much work within school choice literature has expounded on the results of Abdulka-
dirog̈lu and Sönmez (2003). It is important, though, to address criticisms and weakness of
the model as well as some difficulties in application of matching theory to the analysis of
the policy.

20The description of the mechanism is taken directly from Abdulkadirog̈lu and Sönmez (2003).
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One of the central assumptions of the above model is that students have an exogenous
preference over schools that is independent of the other students who are assigned to the
same school. This is rather problematic if the quality of a school is effected by the com-
position of the student body (this is referred to as peer effect). The second issue is that
the effect of a school choice mechanism on school quality is exogenously given and fixed in
the canonical model, although the issue of improving schools takes a center stage of school
choice debate in practice.21 Another major difficulty is that the information submitted by
students is ordinal and does not necessarily convey information on preference intensities.
Abdulkadiroğlu, Che and Yasuda (2011, 2015) and Carroll (2017) analyze this issue theo-
retically. Agarwal and Somaini’s (2016) empirical analysis on strategic reporting in school
choice mechanisms highlighted the importance of further study on mechanisms that use the
intensity of student preferences. Given these issues (and others we are not discussing here),
it is still not completely clear whether the current notions of stability and Pareto efficiency
are the most relevant measures by which to evaluate school choice mechanisms.

4.4 Matching with Constraints

We now proceed to a discussion of a relatively new area of research within matching theory
and market design application, matching with constraints. This field seeks to study alloca-
tions and matching when characteristics and constraints other than the common individual
capacity limits are regarded as desirable or required for feasibility. Schools, hospitals or
firms (to use the language of our previous models) may be not only worried about the
obvious limit on total individuals they can accept but also about the quantity of types of
individuals that are admitted. With the prevalence of affirmative action and the goal of
creating a diverse student/employee body, understanding the implementation and impact
of such policies is crucial. The desire for diversity ranges beyond just race and gender: in
universities, for instance, having students all interested in one or two academic areas is of-
ten considered disadvantageous because it may stymie the intellectual growth of its student
population.

Abdulkadiroğlu and Sönmez (2003) model a simple affirmative action policy of type-
specific quotas and propose mechanisms that satisfy the affirmative action constraints. Un-
der the same type of affirmative action policy, Abdulkadiroğlu (2005) shows that a stable
matching can be found using a strategy-proof, student-proposing deferred acceptance al-
gorithm. These papers pushed affirmative action into mainstream matching literature,
whereas traditional papers on affirmative action were based on “classical” mechanism de-
sign theory.22 Kojima (2012) demonstrated various impossibility results that can arise when
attempting to implement affirmative action policies in a matching environment. There are

21See Hatfield, Kojima and Narita (2016) for an analysis of this topic.
22The study of employment discrimination began in the second half of the 20th century. The two main

theories of discrimination are a theory based on tastes, pioneered by Becker (1957), and a statistical theory,
pushed forth by Phelps (1972) and Arrow (1973). Economists such as Glenn Loury and Roland Fryer have
further developed the literature around race-based affirmative action.
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situations where affirmative action policies inevitably hurt every minority student under
any stable matching mechanism. Furthermore, similar impossibility results hold when using
TTC. Hafalir, Yenmez and Yildirim (2013) further expound on these phenomena and show
that the use of a “quota” vs “reserve” affirmative action system can have significant conse-
quences on the resulting allocation. With minority reserves, schools give higher priority to
minority students up to the point that the minorities fill the reserves. They show that the
deferred acceptance algorithm with minority reserves is Pareto superior for students to the
one with majority quotas.

Kamada and Kojima (2015) advance the idea by looking at matching environments with
more general distributional constraints. One example is the Japan Residency Matching
Program which imposes regional caps on the numbers of prospective residents so as to
limit the concentration of residents in urban areas such as Tokyo. They point out that
the mechanisms used in that market and others with constraints suffer from instability
and inefficiency. To remedy this problem, they create a modified version of the deferred
acceptance algorithm which is strategy-proof for students, constrained efficient, and stable
in an appropriate sense. Kamada and Kojima (2016, 2017) and Goto et al. (2016) further
explore various stability concepts and characterize environments in which stability and other
desirable properties such as stratgy-proofness can be guaranteed.

There are still many issues and problems in the area that are unresolved and worth
pursuing. How to address more general types of constraints, especially lower-bound con-
straints, is still a difficult problem and being actively studied (see Fragiadakis and Troyan
(2016) for instance). New mathematical tools from discrete convex analysis have been ap-
plied to matching with constraints (Kojima, Tamura, and Yokoo 2016), but the use of such
mathematical tools may warrant further investigation.

5 Conclusion

As indicated throughout this article, matching theory has expanded vastly since the seminal
work by Gale and Shapley (1962). Although the theory has advanced considerably, there
are many new questions and issues waiting to be explored further.

To begin with, almost all research in the existing literature defines stability under the
assumption of complete information, but this is at best a rough approximation of reality.
Liu, Mailath, Postlewaite, and Samuelson (2014) investigate stability under incomplete
information in two-sided matching markets with transfer, while Bikhchandani (2014) studies
a similar concept in the no-transfer setting.

Once incomplete information is taken seriously, it is natural to consider “informational
externality”, i.e., interdependence in valuations. Chakraborty, Citanna, and Ostrovsky
(2010, 2015) study two-sided matching with interdependent values, while Che, Kim, and
Kojima (2015) study one-sided matching with interdependent values. In both cases, the
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possibility of extending desirable matching mechanisms from the standard private values
models proved to be severely limited. Designing satisfactory mechanisms under interdepen-
dent values is a promising, if challenging, avenue for future research.23

Another important limitation of the existing literature is that the models tend to be
static. Although some matching markets could be approximated well by a model of a static
market (e.g., yearly medical residency matching or school choice), others may be better
modeled as a dynamic market (e.g., daycare slots assignment with arrival and departure
of children and the ongoing kidney exchange program). In addition to papers on dynamic
kidney exchange already discussed, there is a burgeoning literature on dynamic two-sided
matching markets. Kurino (2009), Du and Livne (2016), Doval (2017), and Kadam and
Kotowski (2017) propose concepts of dynamic stability and analyze existence under various
assumptions on commitment technologies and preferences. This literature is so young that
several alternative stability concepts are being studied, but a consensus on the appropriate
definition has not been reached yet. In the future, a consensus on the appropriate stability
definition may emerge, but it is also possible that different stability concepts are appropriate
in different types of dynamic markets. Reaching conclusions on this and other questions
awaits further research.
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[1] Abdulkadiroğlu, A. (2005). College admissions with affirmative action. International
Journal of Game Theory, 33, 535–549.
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