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a b s t r a c t

We introduce reduced form representations of Bayesian persuasion problems where the variables are
the probabilities that the receiver takes each of her actions. These are simpler objects than, say, the
joint distribution over states and actions in the obedience formulation of the persuasion problem.
This can make a difference in computational and analytical tractability, which we illustrate with two
applications. The first shows that with quadratic receiver payoffs, the worst-case complexity scales
with the number of actions and not the number of states. If |A| and |S| denote the number of actions
and states respectively, the worst case complexity of the obedience formulation is O(|A||S|(|S| +

|A|)1.5L) where L is its input size. The worst-case complexity of the reduced form representation is
O(|A|

2.5L). In the second application, the reduced form leads to a simple greedy algorithm to determine
the maximum value a sender can achieve in any cheap talk equilibrium.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The model of Bayesian persuasion in Kamenica and Gentzkow
2011) is now the main framework for investigating how a princi-
al can use information rather than carrots and sticks to influence
he behavior of an agent.1 There is an underlying state initially
nknown to both principal (called the sender) and agent (called
he receiver). The receiver wishes to choose an action whose
ayoff depends on the unknown state. That action affects the
ender’s payoffs as well. The state, when realized, is revealed only
o the sender. However, before the state is realized, the sender
ommits to how much information about the state she will reveal
to the receiver. Any information revealed by the sender affects the
posterior beliefs of the receiver, thereby affecting the receiver’s
action choice.2 Should the sender obfuscate the actual state, and
if so, how?

The sender’s problem of choosing what information to reveal
bout the state to maximize her payoff can be formulated in
hree ways. The first is in terms of choosing a decomposition
f the prior distribution over states into a convex combination
f possible posterior distributions. This decomposition yields the
nformation structure, that is, the mapping from state to signals

∗ Corresponding author.
E-mail addresses: akhil.vohra@uga.edu (A. Vohra),

oikka@wharton.upenn.edu (J. Toikka), rvohra@seas.upenn.edu (R. Vohra).
1 See Kamenica (2019) for a survey.
2 A standard alternative interpretation is that the sender does not observe

he state either but can design an arbitrary experiment whose result is observed
y the receiver, who then takes an action.
 m
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that the sender should employ to maximize her expected pay-
off (e.g., Kamenica and Gentzkow, 2011; Dworczak and Martini,
2019; Doval and Skreta, 2021). The second, called concavification,
does not explicitly identify the optimal signal structure. Instead,
it characterizes the sender’s optimal expected payoff in terms of
a concave envelope. For examples, see Lipnowski and Mathevet
(2018) and Lipnowski and Ravid (2020). The third assumes that
the sender recommends an action as a function of the underlying
state. These recommendations must be in the receiver’s interest
to follow. For this reason we call it the obedience formulation
(e.g. Kolotilin, 2018; Dughmi and Xu, 2016; Dughmi et al., 2019;
Salamanca, 2021; Galperti and Perego, 2018).

Our paper proposes a reduced-form representation of the obe-
dience formulation. Reduced form representations of optimiza-
tion problems have proved useful in other settings. See, for ex-
ample, Che et al. (2013), Epitropou and Vohra (2019), Pai and
Vohra (2014), Bertsimas and Niño-Mora (1996) and Queyranne
and Schulz (1994). In our case, the reduced form variables are the
probabilities with which the receiver takes each of her actions.
This bypasses the complications associated with decompositions
of distributions or concavification of functions.3

We demonstrate the usefulness of the approach with two
applications. In each, the sender’s preferences are state indepen-
dent. In the first, the receiver cares about matching the state as
measured by a quadratic loss function. Suppose |A| is the number

3 Mathematically, these are equivalent, but a reduced-form representation
ay reveal structure obscured by other representations.
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f actions, |S| the number of states and L the input size.4 Then,
he number of elementary operations needed to find an optimal
olution grows, at worst, as |A|

2.5L (e.g. the worst-case complex-
ty is no more than O(|A|

2.5L)). Thus, the complexity does not
cale with the number of states, which is an advantage in settings
here the number of states far exceeds the number of actions. By
omparison, the worst-case complexity of solving the obedience
ormulation as a linear program is O(|A||S|(|S| + |A|)1.5L). Note,
he input size of both programs is the same.

In the second application, the receiver also benefits from
atching the state, but unlike the quadratic loss case, she incurs
fixed, state-dependent cost when she mismatches. While the

educed form representation does not suggest a simple algorithm
or solving the persuasion problem, it does yield a simple greedy
lgorithm to determine the maximum value a sender can achieve
n any cheap talk equilibrium.

Section 2 of this paper describes the obedience formulation
f the persuasion problem. Section 3 describes the reduced form
epresentation for the first application. Section 4 discusses the
heap talk application.

. The persuasion problem

We formulate the optimal persuasion problem with a finite
umber of states and actions as a linear program. Let S be a finite
et of states and A a finite set of actions. Elements of each are
enoted by ωj and ai, respectively.
We restrict attention to the so-called pure persuasion envi-

onment where the sender’s (she/her) payoff is independent of
he state and depends only on the receiver’s (he/him) action.5 If
he receiver chooses action ai in state ωj, his payoff is denoted
R(ωj, ai), and the value to the sender is denoted VS(ai). The
ender and the receiver share a common prior p over S.
Let x(ωj, ai) be the (joint) probability of the realized state

eing ωj and the sender recommending action ai to the re-
eiver. The sender’s optimization problem (see Myerson, 1991
nd Bergemann and Morris, 2016) is

max
(ω,a)

|A|∑
i=1

|S|∑
j=1

VS(ai)x(ωj, ai)

s.t.
|S|∑
j=1

VR(ωj, ai)x(ωj, ai) ≥

|S|∑
j=1

VR(ωj, ak)x(ωj, ai) for all ai and ak

(1)
|A|∑
i=1

x(ωj, ai) = p(ωj) for all ωj ∈ S (2)

x(ωj, ai) ≥ 0 for all ωj ∈ S and ai ∈ A. (3)

Constraints (1) are the obedience constraints (hereafter re-
ferred to as OC) that ensure that it is in the receiver’s interest
to follow the sender’s recommendation.

Constraints (2) ensure that the total probability weight as-
signed to actions recommended in state ωj matches the prior
probability of state ωj being realized.

Dughmi et al. (2019), Salamanca (2021) and Galperti and
Perego (2018) use duality and complementary slackness to char-
acterize the optimal solution of (1)–(3). Our point is that other
formulations of the persuasion problem can sometimes be more
useful.

4 Given a linear program with constraint matrix M = {mij}, objective function
vector c and right hand side vector b, the input size is

∑
ij log |mij|+

∑
j log |cj|+∑

i log |bi|.
5 This is an oft-studied case in the literature, see for example Brocas and

Carrillo (2007) and Lipnowski et al. (2020).
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3. Pure persuasion: Receiver cares about posterior mean

Assume that S is a finite set of distinct real numbers with at
least two elements and that the optimal action for the receiver is
not the same in all states. Suppose also that the receiver’s prefer-
ences over actions depend only on the posterior mean of the state.
First, we characterize of the class of receiver payoffs that satisfy
this condition. Then, we offer a reduced form representation of
the associated persuasion problem.

Given a posterior p ∈ ∆(S), the receiver’s preferences over
ixed actions are given by the expected utility

∑
a∈A σ (a)u(p, a),

where u(p, a) =
∑

ω∈S p(ω)VR(ω, a). We say that the receiver’s
preferences depend only on the posterior mean if for all posteriors
p, q ∈ ∆(S) such that

∑
ω p(ω)ω =

∑
ω q(ω)ω, there exist

constants α > 0 and β such that u(q, a) = αu(p, a) + β for
all a. That is, the receiver’s preferences over mixed actions are
equivalent in the usual sense given p or q.

The following is, we think, folklore, but as we were unable to
find a reference, we include it for completeness.

Theorem 3.1. The receiver’s preferences depend only on the
posterior mean if and only if there exist functions f , g : A → R
and h : S → R such that: 6

VR(ω, a) = f (a) + g(a)ω + h(ω). (4)

The proof of Theorem 3.1 appears in the appendix. Armed with
it, we may assume VR(ωj, ai) = f (ai) + g(ai)ωj. The obedience
constraint needed to enforce action ai is:∑
ωj∈S

VR(ωj, ai)x(ωj, ai) ≥

∑
ωj∈S

VR(ωj, ai′ )x(ωj, ai)

⇒

∑
ωj∈S

[f (ai) + g(ai)ωj]x(ωj, ai) ≥

∑
ωj∈S

[f (ai′ ) + g(ai′ )ωj]x(ωj, ai)

⇒ [g(ai) − g(ai′ )]
∑
ωj∈S

ωjx(ωj, ai) ≥ [f (ai′ ) − f (ai)]
∑
ωj∈S

x(ωj, ai).

(5)

Depending on the sign of f (ai′ )−f (ai)
g(ai)−g(ai′ )

, Eq. (5) yields either an upper

or lower bound on
∑
ωj∈S

ωjx(ωj,ai)∑
ωj∈S

x(ωj,ai)
. For each ai let Bi be the set of

actions ai′ such that:∑
ωj∈S

ωjx(ωj, ai)∑
ωj∈S

x(ωj, ai)
≥

f (ai′ ) − f (ai)
g(ai) − g(ai′ )

.

Similarly, let Ui be the set of actions ai′ such that:∑
ωj∈S

ωjx(ωj, ai)∑
ωj∈S

x(ωj, ai)
≤

f (ai′ ) − f (ai)
g(ai) − g(ai′ )

Let aiB ∈ Bi be the index that maximizes f (ai′ )−f (ai)
g(ai)−g(ai′ )

. Similarly,

let aiU ∈ Ui be the index that minimizes f (ai′ )−f (ai)
g(ai)−g(ai′ )

. Hence, Eq. (5)
yields:

f (aiU ) − f (ai)
g(ai) − g(aiU )

≥

∑
ωj∈S

ωjx(ai, ωj)∑
ωj∈S

x(ai, ωj)
≥

f (aiB ) − f (ai)
g(ai) − g(aiB )

.

Thus, the persuasion problem reduces to:

max
∑
ai

∑
ωj∈S

x(ωj, ai)VS(ai) (6)

6 Of course, the term h(ω) does not affect the receiver’s behavior, so for any
satisfying (4), there exists a behaviorally equivalent payoff function with h ≡
R 0.
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s.t.
f (aiU ) − f (ai)
g(ai) − g(aiU )

≥

∑
ωj∈S

ωjx(ωj, ai)∑
ωj∈S

x(ωj, ai)
≥

f (aiB ) − f (ai)
g(ai) − g(aiB )

∀ai (7)

The reduced form representation is formulated in terms of
the marginal distribution over the receiver’s action rather than
its joint distribution with the state of the world. In other words,
we would like to reformulate problem (6)–(7) in terms of the
variables zi =

∑
|S|

j=1 x(ωj, ai). To do this, we project the poly-
hedron (7) onto the ‘‘z-space’’. The goal is to provide a succinct
characterization of this projection.

To illustrate, we use a standard payoff function where the
receiver’s payoff depends on how close the action is to the state
as measured by quadratic loss. The setting is canonical, see for ex-
ample Dworczak and Martini (2019) and Kolotilin (2018). Hence,
VR(ωj, ai) = −(ai − ωj)2. Such a payoff function is a special case
of (4). This can be seen by taking f (a) = −

1
2a

2 and g(a) = a.
hen, VR(ω, a) = aω −

1
2a

2, which can be written equivalently
s −

1
2 (a − ω)2 +

1
2ω

2. Of course, the term 1
2ω

2 does not affect
references over A, and hence it can be omitted—as is often
one—if we are only interested in the optimal choice of a.
Without loss, we order the states and actions in S and A in

ncreasing order:

1 < ω2 < . . . < ω|S|

1 < a2 < . . . < a|A|

he persuasion problem in its obedience formulation simplifies,
ia (7) to the following:

max
|A|∑
i=1

|S|∑
j=1

VS(ai)x(ωj, ai) (8)

ai + ai+1

2
≥

∑
|S|

j=1 ωjx(ωj, ai)∑
|S|

j=1 x(ωj, ai)
≥

ai + ai−1

2
∀i ∈ {2, . . . , |A| − 1}

(9)

a1 + a2
2

≥

∑
|S|

j=1 ωjx(ωj, ai)∑
|S|

j=1 x(ωj, ai)
(10)

∑
|S|

j=1 ωjx(ωj, a|A|)∑
|S|

j=1 x(ωj, a|A|)
≥

a|A| + a|A|−1

2
(11)

|A|∑
i=1

x(ωj, ai) = p(ωj) ∀ωj ∈ S (12)

(ωj, ai) ≥ 0 ∀ai ∈ A, ωj ∈ S. (13)

his formulation has |A||S| variables and |A| + |S| constraints.
In Dworczak and Martini (2019) and Kolotilin (2018), the set

f states and actions are intervals with S ⊂ A. The problem is
ormulated so that the variable is a distribution over the posterior
xpected state. When the receiver’s preferences satisfy quadratic
oss, states can be relabeled to equal the receiver’s optimal ac-
ions. Thus, the relevant variable becomes the distribution over
he receiver’s actions. When S ⊂ A this relabeling step is
traightforward, but we do not impose this assumption. Further,
his observation only shows that a formulation in terms of the
istribution over the receiver’s actions is equivalent rather than
etter in a precise sense. As noted in the introduction, the reduced
orm representation has a lower worst-case complexity than the
bedience formulation.
3

Theorem 3.2. For each ωr ∈ S let

1. U+(ωr ) = {i :
ai+ai+1

2 > ωr}

2. B+(ωr ) = {i :
ai+ai+1

2 ≤ ωr}

3. U−(ωr ) = {i :
ai+ai−1

2 > ωr}

4. B−(ωr ) = {i :
ai+ai−1

2 ≤ ωr}

The persuasion problem (8)–(13) can be expressed as

max
z1,...,z|A|

|A|∑
i=1

VS(ai)zi

s.t. ωr

∑
i∈B−(ωr )∪{1}

zi +
∑

i∈U−(ωr )

(ai + ai−1)zi
2

≤

∑
j

max{ωr , ωj}p(ωj) ∀2 ≤ r ≤ |S| (14)

r

∑
i∈U+(ωr )∪{|A|}

zi +
∑

i∈B+(ωr )

(ai + ai+1)
2

zi

≥

∑
j

min{ωj, ωr}p(ωj) ∀1 ≤ r ≤ |S| − 1 (15)

∑
i∈A

zi = 1 (16)

i ≥ 0 ∀i ∈ A. (17)

The proof of Theorem 3.2 appears in the appendix. Observe,
he number of variables in formulation (14)–(17) depends on |A|

nly. Ostensibly, the number of constraints depends on |S| but
any of these will be redundant. To see why, suppose

ai + ai−1

2
≤ ωj < ωj+1 ≤

ai+1 + ai
2

.

Then, B−(ωj) = B−(ωj+1) and U−(ωj) = U−(ωj+1).
In many papers it is common to assume that A = S and

i = ωi = i for all i. In this case, the problem (8)–(13) can be
xpressed as:

max
1,...,z|A|

|A|∑
i=1

VS(i)zi

s.t. z1 +

∑
i≥2

(i − 0.5)zi ≤

∑
i

ip(i) (18)

∑
i∈A

max{(i − 0.5), r}zi ≤

∑
i∈A

max{i, r}p(i) ∀r ≥ 2 (19)∑
i∈A

min{(i + 0.5), r}zi ≥

∑
i∈A

min{i, r}p(i) ∀r ≤ |A| − 1 (20)∑
i≤|A|−1

(i + 0.5)zi + |A|z|A| ≥

∑
i

ip(i) (21)

i ≥ 0 ∀i ∈ A. (22)

onstraints (18) and (21) are the discrete analogs of the follow-
ng:

1

0
xz(x)dx =

∫ 1

0
xp(x)dx.

n words, the expected action must equal the expected state. Also,
ote the absence of (16). This is because it is implied by the other
onstraints. If we choose r = |A| in (19), this yields

∑
i∈A zi ≤ 1.

f we choose r = 1 in (20) it yields
∑

z ≥ 1.
i∈A i
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To interpret (19), it is helpful to consider its ‘continuous’
nalog. Suppose A = S = [0, 1]. Then, (19) can be rendered as:
1

0
max{x, r}z(x)dx ≤

∫ 1

0
max{x, r}p(x)dx ∀r ∈ [0, 1].

herefore, the random variable associated with the density z(x)
s below the random variable associated with the density p(x)
n the increasing convex order (see chapter 3 of Shaked and
hanthikumar, 2007). One consequence is that the variance of
he distribution over actions is smaller than the variance of the
istribution over the states. In effect, the sender is ‘rewarding’
he receiver with lower variance in return for taking an action
hat is more preferred by the sender. Quadratic loss preferences
ender the receiver risk-averse. Thus, they are willing to trade off
higher mean for lower variance.
As the receiver chooses the action closest to the posterior

ean, when the set of actions exactly matches the set of states, a
easible z is equivalent to a distribution over posterior means. The
roblem of characterizing distributions over posterior means was
xplored by Gentzkow and Kamenica (2016). They characterize
he distributions via its integral. Since the integral of a cumula-
ive distribution function is convex, the problem of selecting a
istribution over actions is the same as selecting a distribution
ver posterior means, which in turn is the same as selecting a
onvex function from amongst an ‘interval’ of convex functions.7
owever, there is no characterization of these convex functions.
urthermore, no explicit formulation is given of this optimization
roblem, as the decision variables are not the z’s themselves but
linear functional of them. Thus, our Theorem 3.2 is of particular
ote in that it provides a simple, explicit characterization of the
easible z’s for any set of actions and states. Example 1 below il-
ustrates an advantage of our formulation compared to Gentzkow
nd Kamenica (2016).
As observed above, the size of the reduced form representation

cales with the number of actions, |A| only. In contrast, the size
f the obedience formulation scales with |A||S|. This has impli-
ations for the worst-case complexity of solving the persuasion
roblem.

heorem 3.3. Suppose L is the input size of formulation (14)–(17).
he worst-case complexity of solving formulation (14)–(17) is no
ore than O(|A|

2.5L).

roof. Vaidya (1989) provides a deterministic algorithm that
ill solve a linear program with n variables, m constraints and

nput size L in time O(n(n+m)1.5L). This is not the fastest known
lgorithm; see Cohen et al. (2019) for example. However, it does
dmit a succinct complexity bound. Now, formulation (14)–(17)
as |A| variables and, as argued earlier, the same number of
onstraints. ■

By comparison, the obedience formulation has |A||S| variables
nd O(|A|+|S|) constraints. Therefore, the worst-case complexity
f solving the obedience formulation as a linear program (which
ill have the same input size as (8)–(13)) is O(|A||S|(|S| +

A|)1.5L). Theorem 3.2 indicates the advantage of our approach.
To illustrate the use of reduced form representation, we pro-

ide a simple example.

xample 1. We now provide a contrast with the three action
xample in Gentzkow and Kamenica (2016). They assume the
ender prefers increasing actions and are only able to provide

7 One end of this interval corresponds to the distribution over posterior
eans induced by the most uninformative signal structure and the other induced
y the most informative signal.
4

an explicit characterization under a uniform prior. We show for
any sender preferences and prior how elementary manipulations
will reduce an instance of (18)–(22) to an optimization problem
involving a single variable.

Suppose A = S = {1, 2, 3}. Problem (18)–(22) is:

max VS(1)z1 + VS(2)z2 + VS(3)z3

s.t. z1 + 1.5z2 + 2.5z3 ≤ p(1) + 2p(2) + 3p(3)

2z1 + 2z2 + 2.5z3 ≤

3∑
j=1

max{j, 2}p(j)

1.5z1 + 2z2 + 2z3 ≥

2∑
j=1

min{j, 2}p(j)

1.5z1 + 2.5z2 + 3z3 ≥ p(1) + 2p(2) + 3p(3)

z1 + z2 + z3 = 1

z1, z2, z3 ≥ 0

Using the constraint z1 + z2 + z3 = 1 we can simplify the
constraints to

0.5z2 + 1.5z3 ≤ p(2) + 2p(3)

0.5z3 ≤ p(3)

0.5(z2 + z3) ≥ 0.5 − p(1)

z2 + 1.5z3 ≥ p(2) + 2p(3) − 0.5

z1 + z2 + z3 = 1

z1, z2, z3 ≥ 0

The second of these constraints is redundant.
Eliminating z2, we obtain:

max VS(1)z1 + VS(2)(1 − z1 − z3) + VS(3)z3

s.t. z3 ≤ p(2) + 2p(3) + 0.5z1 − 0.5

z1 ≤ 2p(1)

z3 ≥ 2p(2) + 4p(3) − 3

0 ≤ z3 ≤ 1 − z1

Hence, z3 = min{1−z1, p(2)+2p(3)+0.5z1−0.5}. So, our problem
reduces to the following:

VS(2) + max[VS(1) − VS(2)]z1
+ [VS(3) − VS(2)]min{1 − z1, p(2) + 2p(3) + 0.5z1 − 0.5}

s.t. 1 − 2p(2) − 4p(3) ≤ z1 ≤ 2p(1)

0 ≤ z1 ≤ 1

It is common in the literature to assume that both the sender’s
and receiver’s preferences depend on the posterior mean only
(e.g. Dworczak and Martini, 2019). Hence, one may wonder whethe
our approach would extend to this case. For a specific functional
form of the sender’s payoffs, yes. The analysis is outlined in the
appendix (see Theorem 8.1).
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. Cheap talk

Our reduced-form approach to the Persuasion problem has an
dded benefit in that the formulation allows one to easily com-
ute the value of sender commitment. An important assumption
n the persuasion problem is that the sender can commit ex-ante
o an action recommendation policy. What if the sender cannot
ommit? Then, we are in the classical cheap talk environment.
n the cheap talk version of the pure persuasion problem, the
ender chooses a signal structure (with some fixed, large set of
ignals), and the receiver chooses her strategy (mapping from
ignals to actions) simultaneously.8 We use Lipnowski and Ravid
2020) to link the reduced-form formulation of the constraints
n the persuasion problem to the set of achievable equilibrium
ayoffs in a cheap talk game. We show that a reduced form
epresentation of the pure persuasion problem can also be used
o characterize the maximum payoff a sender can achieve in the
heap talk version of the problem.
To formalize this connection, we will need the following:

efinition 4.1. The sender is said to secure a payoff Q under
nformation policy x if VS(a) ≥ Q for every action a ∈ A recom-
ended with positive probability under x (i.e., for all a ∈ A such

hat
∑

|S|

j=1 x(ωj, a) > 0). A payoff Q can be secured if the sender can
secure it under some information policy.

Theorem 4.2 (Lipnowski and Ravid, 2020).
Let a be the receiver’s best-response action under the prior. If

Q ≥ VS(a) can be secured, then there is an equilibrium in the cheap
talk game that yields Q to the sender.

Lipnowski and Ravid (2020) show that the set of sender equi-
librium payoffs in the cheap talk game is equivalent to the set
of ‘‘securable’’ payoffs for the sender in the corresponding per-
suasion setting. Critical for our analysis is the interpretation of
securability. A securable payoff is the payoff associated with the
worst-case realized action in an information policy. To character-
ize securable payoffs, it suffices to check which actions informa-
tion policies can induce. Thus, for any subset of actions A ⊂ A,
efine the following function f :

(A) = max{
∑
ai∈A

∑
ωj∈S

x(ωj, ai) : s.t. (1)–(3)}.

The optimal value of this program is the maximum frequency
ith which the sender can have the receiver take actions in A
nder any information structure satisfying the obedience con-
traints. Notice, f (A) = 1 implies there is some information policy
uch that the only actions induced by any signal realization are
ctions in A. In particular, consider the action a∗ that is optimal
or the receiver under the prior. Then f ({a∗}) = 1 and VS(a∗) is
ecurable. Thus, there is an equilibrium in the cheap talk game
here the sender receives a payoff of VS(a∗), namely the babbling
ne.
Assume now, without loss of generality, that the actions are la-

eled in the order of decreasing payoff to the sender, i.e., VS(a1) >
S(a2) > . . . > VS(a|A|).

heorem 4.3. Let k∗
= min {k : f ({1. . . . , k}) = 1}. Then, there

s a cheap-talk equilibrium that yields payoff VS(ak∗ ) to the sender.
urthermore, this is the maximum payoff the sender can receive in
ny cheap talk equilibrium.

8 In contrast to the previous section, the states and actions need not be real
umbers, and the receiver’s payoff need not be given by quadratic loss.
 o

5

Proof. By definition of k∗, VS(ak∗ ) can be secured. Now, for any
ction ak, k < k∗, suppose VS(ak) could be secured. Then, there is

an information policy such that for any signal, the induced action
must be from the set {a1, . . . , ak}. However, this would mean
f ({a1, . . . , ak}) = 1, which contradicts the definition of k∗.

Finally, let a be the receiver’s best-response action under the
prior, with no additional information. It must be that VS(ak∗ ) ≥

VS(ā) since f ({ā}) = 1. Applying Theorem 4.2 yields the desired
result. ■

Determining the achievable payoff in any cheap talk equi-
librium is conceptually straightforward. Starting with action a1,
compute the maximum probability with which one can induce
the receiver to play a1. Continue greedily, adding actions into the
set A until the sender can induce the receiver to play only actions
in A.

Theorem 4.3 and its proof demonstrate that the securable
payoffs can be entirely characterized by the function f . A payoff
of Q can be secured if and only if f ({a1, . . . , ak}) = 1 for some
k such that V (ak) ≥ Q . The reduced form representation of the
constraints of the Bayesian Persuasion problem allows us to view
information policies solely through the distribution over actions.
Since the actions determine the value to the sender, computing
the possible securable payoffs is greatly simplified when the
constraints are expressed in such a reduced form.

This procedure does have a close connection to the concavifi-
cation approach. Let Πi denote the set of posteriors that induce
action ai as a best response for the receiver. The following is an
alternative characterization of k∗.

Theorem 4.4. Let k∗
= min

{
k : p ∈ conv

(
∪

k
i=1Πi

)}
. There is

a cheap-talk equilibrium that yields payoff VS(ak∗ ) to the sender.
Furthermore, this is the maximum payoff the sender can receive in
any cheap talk equilibrium.

Proof. A distribution of posteriors is feasible if and only if there
exists a convex combination of said posteriors equal to the prior.
By Theorem 4.3, VS(ak∗ ) is the maximal securable payoff, which
means there is an information policy that induces only actions a ∈

{a1, . . . , ak∗} to be played. Hence, the prior p ∈ conv
(
∪

k∗
i=1Πi

)
.

Now, suppose p ∈ conv
(
∪

k
i=1Πi

)
for k < k∗. This means

there is an information policy that induces only actions a ∈

{a1, . . . , ak} H⇒ f ({a1, . . . , ak}) = 1. This contradicts the defi-
nition of k∗. ■

4.1. Application

The receiver enjoys a benefit bωj > 0 if she ‘‘matches the state’’
ωj and bears cost −cωj < 0 if she does not. Formally, for each
ω ∈ S , there exists a unique a ∈ A such that VR(a, ω) = bω .
Moreover, if VR(a, ω) = bω then VR(a, ω′) = −cω′ for all ω′

̸= ω.
In words, no action is optimal for the receiver at more than one
state. Hence, it suffices to restrict attention to the case where
|A| = |S| = n > 0 as assumed above. The sets A and S
will be represented by {a1, . . . , an} and {ω1, . . . , ωn}, respectively.
Without loss, we assume action ai is optimal in state ωi and, as
above, VS(a1) > VS(a2) > . . . > VS(an). If the receiver selects
ai in state ωi, we say that she matches the state. The matching
tility example of Bergemann et al. (2018) is a special case where
ωj = 0 for all ωj. We provide further examples to motivate this
pecification.

xample 2. An incumbent politician must implement a policy to
ombat an impending crisis or adapt to a new state of affairs. In

ther words, the status quo, no longer tenable, will be replaced
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y a state ωj ∈ S , and the politician must react to the new
nvironment appropriately.
The politician receives information from an ideological think

ank. The think tank will commission studies and research efforts
o inform the politician about the state. These studies are repre-
ented by a signal ψ : S → ∆S, where S is the signal space. Once
the politician observes the choice of ψ and the realized signal,
she selects a policy a ∈ A to implement.

The think tank has preferences over the implemented policies.
The politician’s payoff depends on whether she matches the state.
For each state ωj ∈ S , there is an ideal policy aj ∈ A. If she
implements aj in state ωj, she increases her chance of being re-
elected by bωj . If she implements policy a ̸= aj, and the state turns
out to be ωj, she decreases that chance by cωj . Whether or not the
politician is re-elected is irrelevant to the think tank.

Remark. Implicit is that none of the policies in A are ‘‘out-
landish’’ in the sense of being much worse than the others.

Example 3. A company must select a technology that will be
adopted firm-wide. The set of possible technologies is given by A.
ecause of technological obsolescence, it is likely that only one of
he technologies inAwill become dominant, while the others will
ecome antiquated. That is, if the company adopted technology
∈ A and technology a′

∈ A became dominant, it would need
o replace all of its current technology, and its employees would
eed time to learn how to use a′. In other words, the company
ould incur a switching cost.
A seller has an inventory of each of the technologies in A.

t has preferences over the technologies it wants to sell. The
eller can commit to a signaling policy (studies, research, polls,
urveys, etc.) to inform the company about which technologies
ill become obsolete. In this setting, the states in S correspond
o the technology that becomes the ‘‘winner’’.

Suppose the company selects action aj ∈ A, meaning it adopts
echnology aj. If the state turns out to be ωj, it incurs benefit
ωj . If the state is ωk ̸= ωj, it incurs a switching cost of cωk . In

other words, state ωk represents the setting where technology ak
becomes dominant, and so the company must now switch to the
dominant technology.

To solve for the equilibrium payoff in a cheap talk equilibrium,
we start by describing the constraints that characterize feasible
information policies:

−

∑
j̸=i

cωjx(ai, ωj) + bωix(ai, ωi)

≥ −

∑
j̸=k

cωjx(ai, ωj) + bωkx(ai, ωk) ∀i, k ∈ {1, . . . , n} (23)

n∑
i=1

x(ai, ωj) = p(ωj) for all j ∈ {1, . . . , n} (24)

x(ai, ωj) ≥ 0 for all i, j ∈ {1, . . . , n}. (25)

Constraints (23) are the obedience constraints. We focus on
the maximum frequency with which the sender can have the re-
ceiver take actions in A under any information structure satisfying
the obedience constraints.

Theorem 4.5. For any subset of actions A ⊂ A let

f (A) = max{
∑
ai∈A

∑
ωj∈S

x(ωj, ai) : s.t. ((23)–(25))}.

Then, f (A) =
∑

min{p(ωj),
∑ bωi+cωi p(ωi)} +

∑
p(ωi).
aj ̸∈A ai∈A bωj+cωj ai∈A

6

Proof. The OC simplifies to:

(bωi+cωi )x(ωi, ai)−(bωk+cωk )x(ωk, ai) ≥ 0 for all i, k ∈ {1, . . . , n}.

For notational convenience, set αi = bωi + cωi for all i ∈

{1, . . . , n}. Hence, the constraints of the persuasion problem can
be expressed as follows:

− αix(ωi, ai) + αkx(ωk, ai) ≤ 0 for all i, k ∈ {1, . . . , n} (26)

|A|∑
i=1

x(ωj, ai) = p(ωj) for all j ∈ {1, . . . , n} (27)

zai −
|S|∑
j=1

x(ωj, ai) = 0 for all i ∈ {1, . . . , n} (28)

x(ωj, ai) ≥ 0 for all i, j ∈ {1, . . . , n}. (29)

We wish to eliminate the x variables. To do so, we interpret the
system (26)–(29) in terms of a network flow problem. Each ωj ∈ S
corresponds to a supply node with supply p(ωj). Each ai ∈ A
corresponds to a demand node with demand zai . Any supply node
can serve any demand node. However, there is a side constraint:

x(ωk, ai) ≤ αiα
−1
k x(ωi, ai).

For each i, fix the value of x(ωi, ai) at some ∆i ≤ p(ωi). Then, the
constraints for a feasible flow must satisfy:

x(ωj, ai) ≤ αiα
−1
j ∆i for all i, j ∈ {1, . . . , n} , j ̸= i∑

ai ̸=aj

x(ωj, ai) = p(ωj) −∆j for all j ∈ {1, . . . , n}

zai −∆i −
∑
ωj ̸=ωi

x(ωj, ai) = 0 for all i ∈ {1, . . . , n}

x(ωj, ai) ≥ 0 for all i, j ∈ {1, . . . , n}.

Now, these equations describe a standard flow problem with ca-
pacity constraints on the arc flows. Each supply node has supply
p(ωj) − ∆j, and each demand node demands zai − ∆i. By Gale’s
demand theorem (see Gale, 1957), this flow problem is feasible if
and only if for all A ⊆ A, we have:∑
ai∈A

zai ≤

∑
j̸∈A

min{p(ωj) −∆j,
∑
i∈A

αiα
−1
j ∆i} +

∑
i∈A

p(ωi). (30)

n words, the total demand in any subset A of demand nodes
annot exceed the total supply of all supply nodes that service
hem.

Observe that the right hand side of (30) is maximized when
e set ∆j = 0 for all aj ̸∈ A and ∆i = p(ωi) for all ai ∈ A. ■

Rather than focusing on the specific values of x(ai, ωj) or the
ignal structure, the sender’s problem reduces to one of ‘‘how
uch flow can she transmit to action ai?’’
For each index i let Ai

= {a1, . . . , ai} and set k∗
= min

i : f (Ai) = 1
}
. From the definition of f (A), it follows that k∗ is

he smallest index such that:

max
≥k∗+1

(bωj + cωj )p(ωj) ≤

k∗∑
i=1

(bωi + cωi )p(ωi) ≤ min
j≤k∗

(bωj + cωj )p(ωj).

By Theorem 4.3, the maximum achievable payoff in a cheap
talk equilibrium is VS(ak∗ ).

Example 4. Returning to the matching utility example of Berge-
mann et al. (2018), our analysis above provides an easy way
of determining the maximal sender payoff. The network flow
interpretation of f allows for a simple characterization of the
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ignal structure. Using the language of the proof of Theorem 4.5,
s each action is associated with a state, sending flow from supply
ode ωj to demand node ai represents the partial pooling of
tate ωj with ωi. Therefore, our computation of the closed-form
expression of f in Theorem 4.5 determines which states should
be pooled.

Let A = {a1, . . . , ak∗}, and consider a signal space with k∗

lements, {s1, . . . , sk∗}. The sender will take the states ωj for j >
k∗ and pool them with the states ωi for i ≤ k∗. This creates k∗

pools, one for each ωi for i ≤ k∗.
Conceptually, the sender will let the receiver know which pool

the state is in: for each i ≤ k∗, the sender will send a signal
si for all states that are pooled with ωi. The conditional state
probabilities are given by the fraction of flow into the demand
node ai.

Formally, the signal structure π is defined, as follows:

1. For each i > k∗, define p̂i(ωj) = max
{
p(ωj) −

∑i−1
k=1 p(ωk), 0

2. Set π (si) = p(ωi) +
∑

aj /∈A
min

{
p(ωi), p̂i(ωj)

}
3. For each j > k∗, set π (ωj|si) =

Ip̂i(ωj)≥p(ωi)

1 +
∑

ak /∈A
Ip̂i(ωk)≥p(ωi)

Given signal structure π , the receiver’s strategy σ i, upon ob-
serving signal realization si, is to mix over actions in the set
D =

{
aj|p̂ij ≥ p(ωi)

}
in such a way that

∑
a∈D σ (a)VS(a) = VS(ak∗ ).

5. Conclusion

We illustrated the usefulness of reduced form representations
for persuasion problems in two ways. In the first, the reduced
form reduces the worst-case complexity of determining the op-
timal persuasion scheme. In the second, it is used to identify a
simple algorithm to determine the maximum payoff a sender can
achieve in any cheap talk equilibrium.
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Appendix A. Proof of Theorem 3.1

If VR satisfies (4), then, u(p, a) = f (a) + g(a)Epω + Eph. Thus,
if q has the same mean as p, then u(q, a) = u(p, a) + (Eqh − Eph)
as desired.

To show the converse, suppose first that there are two states,
ω and ω′. Then, every payoff function VR satisfies (4) with h ≡ 0.
To see this, fix VR. Define functions f , g by f (a) = VR(ω, a) −

[VR(ω′, a) − VR(ω, a)] ω
ω′−ω

and g(a) = [VR(ω′, a) − VR(ω, a)] 1
ω′−ω

.
hen f (a)+ g(a)ω = VR(ω, a) and f (a)+ g(a)ω′

= VR(ω′, a). Thus,
R satisfies (4) with h ≡ 0.
Now suppose there are n ≥ 3 states. Without loss, assume

1 < · · · < ωn. By the previous step, the restriction of VR to the
et {ω1, ωn} × A satisfies (4) with h ≡ 0. That is, there exist f , g
uch that V (ω , a) = f (a) + g(a)ω for all a ∈ A for j ∈ {1, n}.
R j j

7

Let j ∈ {2, . . . , n − 1}. Then there exists λ ∈ (0, 1) such that
λω1 + (1 − λ)ωn = ωj. Let pλ be the corresponding two-point
distribution. Since the receiver’s preferences depend only on the
mean, there exist constants αj > 0 and βj such that, for all a,

VR(ωj, a) = u(δωj , a) = αju(pλ, a) + βj

= αj[λVR(ω1, a) + (1 − λ)VR(ωn, a)] + βj.

Using the form of VR at ω1 and ωn then gives:

VR(ωj, a) = αj[f (a) + g(a)ωj] + βj.

By inspection of (4), it suffices to show that αj = 1. To this end,
take µ ∈ (0, 1) and η ∈ (0, 1) such that 0 ̸= ω̄ := µω1 + (1 −

µ)ωn = ηωj+(1−η)ωn. Because the receiver’s preferences depend
only on the posterior mean, there exist constants κ > 0 and ρ
such that, for all a, u(pη, a) = κu(pµ, a) + ρ, or

VR(ωj, a)+(1−η)VR(ωn, a) = κ[µVR(ω1, a)+(1−µ)VR(ωn, a)]+ρ.

Substituting in what we know about VR gives

η[αj(f (a)+g(a)ωj)+βj]+(1−η)(f (a)+g(a)ωn) = κ[f (a)+g(a)ω̄]+ρ.

Matching the coefficients of f (a) on both sides gives κ = ηαj +

1 − η. Similarly, matching the coefficients of g(a) gives κ =

[ηαjωj+(1−η)ωn]/ω̄. Thus, the equation can hold for every action
a only if these two expressions for κ coincide, which can easily
be verified to be the case only if αj = 1.9

Appendix B. Proof of Theorem 3.2

The persuasion problem in its obedience formulation assum-
ing quadratic loss for the receiver is:

max
|A|∑
i=1

|S|∑
j=1

VS(ai)x(ωj, ai) (31)

s.t.
|S|∑
j=1

[(ak −ωj)2 − (ai −ωj)2]x(ωj, ai) ≥ 0 for all ai, ak ∈ A (32)

|A|∑
i=1

x(ωj, ai) = p(ωj) ∀ωj ∈ S (33)

(ωj, ai) ≥ 0 ∀ai ∈ A, ωj ∈ S. (34)

sing Eq. (7) the relevant OC are:

ai + ai+1

2
≥

∑
|S|

j=1 ωjx(ωj, ai)∑
|S|

j=1 x(ωj, ai)
≥

ai + ai−1

2
∀i ∈ {2, . . . , |A| − 1}

a1 + a2
2

≥

∑
|S|

j=1 ωjx(ωj, ai)∑
|S|

j=1 x(ωj, ai)∑
|S|

j=1 ωjx(ωj, a|A|)∑
|S|

j=1 x(ωj, a|A|)
≥

a|A| + a|A|−1

2

9 To see this in somewhat more detail, recall that by the maintained
ssumption in this section, the optimal action for the receiver is not the
ame in all states. Moreover, we have already shown above that VR(ωj, a) =

j(f (a)+ g(a)ωj)+βj for all j. Topkis’ Theorem implies that the term g(a) has to
be non-decreasing in ω under the optimal action, and hence the optimal actions
at ω1 and at ωn must be different. (Otherwise, the action that is optimal at these
extreme states would be optimal at all states, violating our assumption.) Since
α1 = αn = 1 and β1 = βn = 0, this means that there exist actions a and b such
that f (a)+g(a)ω1 > f (b)+g(b)ω1 and f (a)+g(a)ωn < f (b)+g(b)ωn . Subtracting
the second inequality from the first gives g(a)(ω1 − ωn) > g(b)(ω1 − ωn), or
g(b) > g(a). But then the first inequality implies f (a) > f (b). Therefore, we have
f (a) ̸= f (b) and g(a) ̸= g(b), and for the equation to hold for both a and b, the
two expressions for κ have to coincide.
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Using this, we reformulate (32)–(34):

−

|S|∑
j=1

ωjx(ωj, ai) +

|S|∑
j=1

(ai + ai−1

2

)
x(ωj, ai) ≤ 0 ∀i ∈ {2, . . . , |A|}

(35)

|S|∑
j=1

ωjx(ωj, ai)−
|S|∑
j=1

(ai + ai+1

2

)
x(ωj, ai) ≤ 0 ∀i ∈ {1, . . . , |A| − 1}

(36)
|A|∑
i=1

x(ωj, ai) = p(ωj) ∀ωj ∈ S (37)

i −

|S|∑
j=1

x(ωj, ai) = 0 ∀i ∈ {1, . . . , |A|} (38)

(ωj, ai) ≥ 0 ∀ωj ∈ S ai ∈ A. (39)

Our goal is to eliminate the x variables and find an equivalent
representation involving just the z variables. Geometrically, we
re projecting the polyhedron (35)–(39), which lives in the (x, z)

space, into just the z space. We review the basic facts about
projections next. For more details see Balas (2001). The reader
familiar with this can omit it without loss.

B.1. Projection

Let P = {(x, y) : Ax + By ≤ b} where x ∈ Rn, y ∈ Rk, b ∈ Rm,
A is a m × n matrix and B is a m × k matrix. Assume P ̸= ∅. The
projection of P into the x space is the set Q = {x ∈ Rn

: ∃y ∈

Rkst. (x, y) ∈ P}. We would like to obtain a description of Q . Let
= {u ≥ 0 : uB = 0}. The set C is a polyhedral cone sometimes

alled the elimination cone. Notice there is one component of u

or each inequality in P .

heorem 7.1.

= {x : uAx ≤ ub ∀u ∈ C}.

roof. It is straightforward to see that

⊆ {x : uAx ≤ ub u ≥ 0 uB = 0, u ̸= 0}.

uppose, for a contradiction that there is an x∗ in {x : uAx ≤

ub u ≥ 0 uB = 0, u ̸= 0} that is not in Q . This means there
is no feasible choice of y in the following system:

Ax∗
+ By ≤ b.

By the Farkas lemma, there must exist a vector u ≥ 0 such that
u(b − Ax∗) < 0 and uB = 0. However, this contradicts the choice
of x∗. ■

Let U be the set of extreme rays of C . An extreme ray is a vector
in C that cannot be expressed as non-negative linear combination
of other vectors in C . There are a finite number of these. Hence,

Q = {x : uAx ≤ ub u ∈ U}.

If the only solution to uB = 0, u ≥ 0 is the trivial one, then,
Q = Rn.

Thus, the problem of characterizing Q reduces to determining
the extreme rays of the elimination cone. Identifying the extreme
rays of a polyhedral cone is a straightforward but tedious com-
putation involving a variant of Gaussian elimination credited to
Fourier and Motzkin (see Khachiyan, 2001). Our goal is not just
to compute the extreme rays but find a succinct characterization
of them.
 t

8

Our approach to doing so will be to select an arbitrary x ∈ Q
and focus on argmax{u(Ax − b) : s.t. u ∈ C}. While the feasible
region is unbounded (because C is a cone), this linear program has
an optimal solution because it is both feasible, and the objective
function value is bounded above by zero. The last follows from
the fact that u ∈ C . If this program has multiple optima, we can,
by scaling, focus on one that satisfies 1u = 1. In this way, we
determine the tangent hyperplanes to Q .

While the polyhedron P in the larger space was described
using inequalities only, accommodating equality constraints can
be done in the usual way. The component of u corresponding to
an equality constraint would be unrestricted in sign.

B.2. The elimination cone

If we set y(ωj, ai) = ωjx(ωj, ai), the constraints (35)–(37) can
e rewritten as

|S|∑
j=1

y(ai, ωj) +

(ai + ai−1

2

)
zi ≤ 0 ∀i ∈ {2, . . . , |A|} (ui)

|S|

j=1

y(ωj, ai) −

(ai + ai+1

2

)
zi ≤ 0 ∀i ∈ {1, . . . , |A| − 1} (vi)

|A|

i=1

y(ωj, ai) = ωjp(ωj) ∀ωj ∈ S (wj)

i −

|S|∑
j=1

ω−1
j y(ωj, ai) = 0 ∀i ∈ {1, . . . , |A|} (λi)

e have included with constraint, in parenthesis, the variables
hat will be used in the description of the elimination cone. The
limination cone is given by

− ui + vi + wj − λiω
−1
j ≥ 0 ∀2 ≤ i ≤ |A| − 1, j ∈ S (40)

− u|A| + wj − λ|A|ω
−1
j ≥ 0 ∀j (41)

1 + wj − λ1ω
−1
j ≥ 0 ∀j (42)

i ≥ 0 ∀i ∈ {2, . . . , |A|} (43)

i ≥ 0 ∀i ∈ {1, . . . , |A| − 1} (44)

Each non-trivial element of the elimination cone where at
east one of u or v is non-zero gives rise to the following inequal-
ty∑
i

λizi +
∑
i≥2

0.5ui(ai + ai−1)zi

−

∑
i≤|A|−1

0.5vi(ai + ai+1)zi ≤

∑
j

wjωjp(ωj). (45)

On the other hand, if for all i, ui = vi = 0, λi = 1 and wj = 0
or all j, we obtain

∑
i zi = 1. We assume that the non-zero values

f λ are all the same. By scaling we can suppose they are all 1’s
r all −1’s. We justify this at the completion of the proof.

roposition 7.2. (x, z) is feasible for (35)–(39) if and only if z is
easible for (15)–(17).

roof. The proof is divided into two parts. In the first we suppose
he λs are 0-−1 and this will generate (14). In the second part
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w
(

P
e
a

e suppose that λi ∈ {0,−1} for all i ∈ A and this will generate
zloss1).

art 1: Let T = {i : λi = 1} and focus on elements of the
limination cone where at least one of u or v is non-zero. Choose
ny feasible z and consider

max
∑
i≥2

0.5ui(ai+ai−1)zi−
∑

i≤|A|−1

0.5vi(ai+ai+1)zi−
∑

j

wjωjp(ωj)

(46)

s.t. − ui + vi + wj ≥ ω−1
j ∀2 ≤ i ≤ |A| − 1, i ∈ T , j ∈ S (47)

− ui + vi + wj ≥ 0 ∀2 ≤ i ≤ |A| − 1, i ̸∈ T , j ∈ S (48)

− u|A| + wj − λ|A|ω
−1
j ≥ 0 ∀j (49)

v1 + wj − λ1ω
−1
j ≥ 0 ∀j (50)

ui ≥ 0 ∀i ∈ {2, . . . , |A|} (51)

vi ≥ 0 ∀i ∈ {1, . . . , |A| − 1} (52)

Problem (46)–(52) is clearly feasible, and given the choice of z,
has a bounded objective function value. Without loss we can
assume that uivi = 0 for all i ∈ {2, . . . , |A| − 1}. If not, add
δ < 0 to both ui and vi. Feasibility is preserved and the objective
function value changes by δ(ai−1 − ai) > 0 which contradicts
optimality.

Choose K ⊆ {2, . . . , |A|−1} and let K ∗ be {2, . . . , |A|−1} \K
with at least one of K or K ∗ being non-empty. We focus on
solutions to (46)–(52) where vi > 0 for all i ∈ K and ui ≥ 0
for all i ∈ K ∗. The corresponding optimization problem is

max
∑

i∈K∗∪|A|

0.5ui(ai+ai−1)zi−
∑

i∈K∪{1}

0.5vi(ai+ai+1)zi−
∑

j

wjωjp(ωj)

s.t. vi + wj ≥ ω−1
j ∀i ∈ K ∩ T , j ∈ S

−ui + wj ≥ ω−1
j ∀i ∈ K ∗

∩ T , j ∈ S

vi + wj ≥ 0 ∀i ∈ T c
∩ K , j ∈ S

−ui + wj ≥ 0 ∀i ∈ T c
∩ K ∗, j ∈ S

−u|A| + wj − λ|A|ω
−1
j ≥ 0 ∀j

v1 + wj − λ1ω
−1
j ≥ 0 ∀j

ui ≥ 0 ∀i ∈ {2, . . . , |A|}

vi ≥ 0 ∀i ∈ {1, . . . , |A| − 1}

Fixing the value of the wjs, the variables ui and vi are bounded as
follows:

1. ∀i ∈ K ∩ T , vi ≥ maxj(ω−1
j −wj) = (ω−1

j1
−wj1 ) and vi ≥ 0.

2. ∀i ∈ K ∗
∩ T , 0 ≤ ui ≤ minj(wj − ω−1

j ) = wj1 − ω−1
j1

.
3. ∀i ∈ T c

∩K , vi ≥ maxj −wj = −minjwj = −wj2 and vi ≥ 0.
4. ∀i ∈ T c

∩ K ∗, 0 ≤ ui ≤ minjwj = wj2 .
5. v1 ≥ maxj(λ1ω−1

j −wj) and v1 ≥ 0. Depending on the value
of λ the maximum is attained on index j1 or j2.

6. u|A| ≥ minj(wj − λ|A|ω
−1
j ) and u|A| ≥ 0. Depending on the

value of λ the minimum is attained on index j or j .
1 2

9

In an optimal solution, each vi would be set at its lower bound
and each ui to its upper bound.

Case 1: maxj(ω−1
j − wj) = (ω−1

j1
− wj1 ) ≤ 0.

From item 1 above it follows that vi = 0 for all i ∈ K ∩ T .
As wj ≥ ω−1

j ≥ 0 for all j, from item 3 it follows that vi = 0 for
i ∈ K ∩T c . From item 5 we see that whether we set λ = 1 or 0 we
can always choose v1 = 0. Therefore, our optimization problem
becomes

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi −
∑

j

wjωjp(ωj)

s.t. 0 ≤ ui = wj1 − ω−1
j1

∀i ∈ K ∗
∩ T

0 ≤ ui = wj2 ∀i ∈ K ∗
∩ T c

0 ≤ u|A| = min
j

(wj − λ|A|ω
−1
j )

ω−1
j ≤ wj ∀j

wj2 ≤ wj ∀j ̸= j2

wj1 − ω−1
j1

≤ wj − ω−1
j ∀j ̸= j1

Clearly wj = max{ω−1
j + wj1 − ω−1

j1
, wj2} for all j ̸= j1, j2 and the

objective function value is piecewise linear in wj1 and wj2 . The
only constraints that will be relevant are

ω−1
j2

≤ wj2 (53)

wj2 ≤ wj1 (54)

0 ≤ wj1 − ω−1
j1

≤ wj2 − ω−1
j2

(55)

The optimal solution must occur where at least one of (53) or (54)
binds. If not, we can add δ to wj1 and wj2 , preserve feasibility
and change objective function in proportion to δ, contradicting
optimality.

If either (53) or (54) binds, we can choose j1 and j2 to be the
same index, say, index r . Then, the objective function value is a
function of wr alone. The only constraint is wr ≥ ω−1

r and this
must bind otherwise the objective function is unbounded. Hence

wj = max{ω−1
j + wr − ω−1

r , wr} = max{ω−1
j , ω−1

r }

for all j ̸= r . While the optimal choice of r will depend on K ∗ and
T , any choice of r will yield a valid inequality.

The objective function value becomes

ω−1
r

∑
i∈K∗∩T c

0.5(ai + ai−1)zi + (ω−1
r − λ|A|ω

−1
r )0.5(a|A| + a|A|−1)

− max{ω−1
j , ω−1

r }

∑
j

ωjp(ωj)

The corresponding inequality is

ωr

∑
i∈T

zi +
∑

i∈K∗∩T c
0.5(ai + ai−1)zi + (1 − λ|A|)0.5(a|A| + a|A|−1)

≤ max{ω−1
j ωr , 1}

∑
j

ωjp(ωj).

The strongest version of this inequality for each fixed r occurs
when T = {i : 0.5(a + a ) ≤ ω } ∪ {1} (because we were free
i i−1 r
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o choose λ1 = 1) and K ∗
= T c . Therefore, λ|A| = 0:

rz1 + ωr

∑
i̸=1:0.5(ai+ai−1)≤ωr

zi +
∑

i:0.5(ai+ai−1)>ωr

0.5(ai + ai−1)zi

≤

∑
j

max{ωr , ωj}p(ωj).

ase 2: maxj(ω−1
j −wj) = (ω−1

j1
−wj1 ) ≥ 0 and wj2 = minjwj ≤ 0.

From item 1 vi = ω−1
j1

− wj1 for all i ∈ K ∩ T . From item 3,
i = −wj2 for all i ∈ K ∩ T c . From item 2 we have 0 ≤ ui ≤

j1 − ωj1 ≤ 0 for i ∈ K ∗
∩ T . Thus, ui = 0 for all i ∈ K ∗

∩ T and
j1 − ωj1 = 0. From item 4, 0 ≤ ui = wj2 ≤ 0 for all j ∈ K ∗

∩ T c ,
ence, ui = 0∀i ∈ K ∗

∩ T and wj2 = 0.
The optimization problem becomes

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi −
∑

i∈K∪{1}

0.5vi(ai + ai+1)zi

−

∑
j

wjωjp(ωj)

s.t. ui = 0 ∀i ∈ K ∗

0 ≤ u|A| = min
j

(wj − λ|A|ω
−1
j )

vi = 0 ∀i ∈ K

v1 = max{max
j

(λ1ω−1
j1

− wj1 ), 0}

ω−1
j1

= wj1

0 = wj2 ≤ wj ∀j ̸= j2

0 = wj1 − ω−1
j1

≤ wj − ω−1
j ∀j ̸= j1

Now, whether λ1 = 1 or 0, v1 = 0. To maximize, we would set
u|A| as large as possible which we can do by choosing λ|A| = 0.
Hence, 0 ≤ u|A| = wj2 , i.e. u|A| = 0. Finally, we set wj =

ω−1
j for all j. This leaves us with an objective function value of

−
∑

j p(ωj) = 1. The corresponding inequality is
∑

i∈T zi − 1 ≤ 0.
The strongest version of this is

∑
i∈A zi ≤ 1.

Case 3: maxj(ω−1
j −wj) = (ω−1

j1
−wj1 ) ≥ 0 and wj2 = minjwj ≥ 0.

From item 1 vi = ω−1
j1

− wj1 for all i ∈ K ∩ T . From item 3,
vi = max{−wj2 , 0} = 0 for all i ∈ K ∩ T c . From item 2 we have
0 ≤ ui ≤ wj1 −ωj1 ≤ 0 for i ∈ K ∗

∩T . Thus, ui = 0 for all i ∈ K ∗
∩T

nd wj1 − ωj1 = 0. From item 4, 0 ≤ ui = wj2 for all j ∈ K ∗
∩ T c ,

The optimization problem is

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi

−

∑
i∈K∪{1}

0.5vi(ai + ai+1)zi −
∑

j

wjωjp(ωj)

s.t. ui = 0 ∀i ∈ K ∗
∩ T

ui = wj2 ∀i ∈ K ∗
∩ T c

u|A| = min
j

(wj − λ|A|ω
−1
j )

vi = 0 ∀i ∈ K

v1 = max{max(λ1ω−1
j − wj1 ), 0}
j 1

10
ω−1
j1

= wj1

0 ≤ wj2 ≤ wj ∀j ̸= j2

wj1 − ω−1
j1

≤ wj − ω−1
j ∀j ̸= j1

To optimize, we would set λ|A| = 0 and λ1 = 0. Hence
u|A| = wj2 and v1 = 0.

Our optimization problem reduces to

max
∑

i∈[K∗∩T c ]∪|A|

0.5wj2 (ai + ai−1)zi −
∑

j

wjωjp(ωj)

s.t. 0 ≤ wj2 ≤ wj ∀j ̸= j2

0 ≤ wj − ω−1
j ∀j ̸= j1

Therefore, at optimality wj = max{wj2 , ω
−1
j }. The optimal so-

lution must occur at some breakpoint, say wj2 = ω−1
r . The

corresponding inequality is∑
i∈T

zi + ω−1
r

∑
i∈[K∗∩T c ]∪|A|

0.5(ai + ai−1)zi

≤

∑
j

max{ω−1
r , ω−1

j }ωjp(ωj)

ωr

∑
i∈T

zi +
∑

i∈[K∗∩T c ]∪|A|

0.5(ai + ai−1)zi ≤

∑
j

max{ωr , ωj}p(ωj)

However, this is the same inequality we had in case 1.

Part 2: Now, let T = {i : λi = −1}. As before, choose any feasible
z and consider

max
∑
i≥2

0.5ui(ai+ai−1)zi−
∑

i≤|A|−1

0.5vi(ai+ai+1)zi−
∑

j

wjωjp(ωj)

(56)

s.t. − ui + vi + wj ≥ −ω−1
j ∀2 ≤ i ≤ |A| − 1, i ∈ T , j ∈ S (57)

− ui + vi + wj ≥ 0 ∀2 ≤ i ≤ |A| − 1, i ̸∈ T , j ∈ S (58)

− u|A| + wj − λ|A|ω
−1
j ≥ 0 ∀j (59)

1 + wj − λ1ω
−1
j ≥ 0 ∀j (60)

i ≥ 0 ∀i ∈ {2, . . . , |A|} (61)

i ≥ 0 ∀i ∈ {1, . . . , |A| − 1} (62)

roblem (56)–(62) is feasible and has a bounded objective func-
ion value. As before we can assume that uivi = 0 for all i ∈

2, . . . , |A| − 1}.
Choose K ⊆ {2, . . . , |A|−1} and let K ∗ be {2, . . . , |A|−1} \K

ith at least one of K or K ∗ being non-empty. We focus on
olutions to (56)–(62) where vi > 0 for all i ∈ K and ui ≥ 0
or all i ∈ K ∗. The corresponding optimization problem is

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi

−

∑
i∈K∪{1}

0.5vi(ai + ai+1)zi −
∑

j

wjωjp(ωj)

−1
s.t. vi + wj ≥ −ωj ∀i ∈ K ∩ T , j ∈ S
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ui + wj ≥ −ω−1
j ∀i ∈ K ∗

∩ T , j ∈ S

i + wj ≥ 0 ∀i ∈ T c
∩ K , j ∈ S

ui + wj ≥ 0 ∀i ∈ T c
∩ K ∗, j ∈ S

u|A| + wj − λ|A|ω
−1
j ≥ 0 ∀j

1 + wj − λ1ω
−1
j ≥ 0 ∀j

ui ≥ 0 ∀i ∈ {2, . . . , |A|}

vi ≥ 0 ∀i ∈ {1, . . . , |A| − 1}

Fixing the value of the wjs (these can be negative), the variables
ui and vi are determined as follows:

1. vi ≥ max{maxj(−ω−1
j − wj), 0} ∀i ∈ K ∩ T

2. 0 ≤ ui ≤ minj(wj + ω−1
j ) ∀i ∈ K ∗

∩ T .
3. vi ≥ max{maxj −wj, 0} ∀i ∈ K ∩ T c

4. 0 ≤ ui ≤ minjwj ∀i ∈ K ∗
∩ T c

5. v1 ≥ max{maxj(λ1ω−1
j − wj), 0}

6. 0 ≤ u|A| ≤ minj(wj − λ|A|ω
−1
j )

Case 1: maxj(−ω−1
j − wj) = −ω−1

j1
− wj1 ≥ 0.

By item 1 above vi = −ω−1
j1

− wj1 ≥ 0 for all i ∈ K ∩ T . By
item 2 above we have

0 ≤ ui ≤ min
j

(wj + ω−1
j ) ≤ 0.

Therefore ui = 0 for all i ∈ K ∗
∩ T and (wj1 + ω−1

j1
) = 0. Hence,

vi = 0 for all i ∈ K ∩ T .
Now, wj1 = −ω−1

j1
≤ 0 implies that minjwj ≤ 0. Therefore, by

item 3 above vi = −minjwj = −wj2 ≥ 0 for all i ∈ K ∩ T c .
By item 4 above, 0 ≤ ui ≤ minjwj ≤ 0 for all i ∈ T c

∩ K ∗.
Either minjwj = 0 or T c

∩ K ∗
= ∅.

In the first case ui = 0 for all i ∈ K ∗, vi = 0 for all i ∈ K and
the optimization problem becomes

max 0.5u|A|(a|A| + a|A|−1)z|A| − 0.5v1(a1 + a2)z1 −

∑
j

wjωjp(ωj)

s.t. 0 ≤ u|A| = min
j

(wj − λ|A|ω
−1
j )

0 ≤ v1 = max
j

(λ1ω−1
j − wj)

ω−1
j1

+ wj1 = 0

−wj2 ≥ −wj ∀j ̸= j2

0 ≤ wj + ω−1
j ∀j ̸= j1

If λ|A| = 0, then 0 ≤ u|A| ≤ minjwj = 0. In that case we
would set each wj as small as possible which is max{0,−ω−1

j } =

0. This gives rise to the trivial inequality
∑

i∈T zi ≥ 0. If λ|A| = −1,
then 0 ≤ u|A| minj(wj + ω−1

j ) ≤ 0. Again, we obtain a trivial
inequality.

So we go on to consider the next possibility, which means that
K ∗

⊆ T . The optimization problem becomes

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi

−

∑
0.5vi(ai + ai+1)zi −

∑
wjωjp(ωj)
i∈K∪{1} j

11
s.t. ui = 0 ∀i ∈ K ∗

0 ≤ u|A| = min
j

(wj − λ|A|ω
−1
j )

0 ≤ vi = −wj2 ∀i ∈ K ∩ T c

vi = 0 ∀i ∈ K ∩ T

v1 = max{max
j

(λ1ω−1
j − wj), 0}

ω−1
j1

+ wj1 = 0

−wj2 ≥ −wj ∀j ̸= j2

0 ≤ wj + ω−1
j ∀j ̸= j1

Whether we set λ1 = −1 or λ1 = 0, v1 is always zero.
Feasibility requires that λ|A| = −1 which forces u|A| = 0. So,
our optimization problem becomes:

maxwj2

∑
i∈K∩T c

0.5(ai + ai+1)zi −
∑

j

wjωjp(ωj)

s.t. ω−1
j1

+ wj1 = 0

−wj2 ≥ −wj ∀j ̸= j2

0 ≤ wj + ω−1
j ∀j ̸= j1

wj2 ≤ 0

The constraints reduce to −ω−1
j2

≤ wj2 ≤ −ω−1
j1

and wj =

max{wj2 ,−ω
−1
j } for all j ̸= j2. So, we can write the optimization

problem as

maxwj2

∑
i∈K∩T c

0.5(ai + ai+1)zi

−

∑
j̸=j2

max{wj2 ,−ω
−1
j }ωjp(ωj) − wj2ωj2p(ωj2 )

s.t. − ω−1
j2

≤ wj2 ≤ −ω−1
j1

At optimalitywj2 must be at its upper or lower bound. Suppose
first that −ω−1

j2
= wj2 . The objective function value becomes

−ω−1
j2

∑
i∈K∩T c

0.5(ai+ai+1)zi+p(ωj2 )−
∑
j̸=j2

max{−ω−1
j2
,−ω−1

j }ωjp(ωj)

The corresponding inequality is

−

∑
i∈T

zi − ω−1
j2

∑
i∈K∩T c

0.5(ai + ai+1)zi + p(ωj2 )

−

∑
j̸=j2

max{−ω−1
j2
,−ω−1

j }ωjp(ωj) ≥ 0

ωj2

∑
i∈T

zi +
∑

i∈K∩T c
0.5(ai + ai+1)zi ≥ ωj2p(ωj2 )

−

∑
j̸=j2

max{−1,−ωj2ω
−1
j }ωjp(ωj)

ωj2

∑
zi +

∑
0.5(ai + ai+1)zi ≥

∑
min{ωj, ωj2}p(ωj)
i∈T i∈K∩T c j
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Because K ∗
⊆ T it means that K = T c and so the strongest

ersion of this inequality occurs when T = {i : 0.5(ai + ai+1) >
j2} ∪ {|A|}.

j2z|A| + ωj2

∑
i̸=|A|:0.5(ai+ai+1)>ωj2

zi +
∑

i:0.5(ai+ai+1)≤ωj2

0.5(ai + ai+1)zi

≥

∑
j

min{ωj, ωj2}p(ωj)

The second possibility is that wj2 = −ω−1
j1

. The objective
unction becomes:

ω−1
j1

∑
i∈K∩T c

0.5(ai + ai+1)zi −
∑

j

max{−ω−1
j1
,−ω−1

j }ωjp(ωj)

ut this yields the same inequality as before.

ase 2: (wj1 +ω−1
j1

) = minj(wj +ω
−1
j ) ≥ 0 and wj2 = minjwj ≥ 0.

By item 1 we have that vi = 0 for all i ∈ K ∩ T . By item 3 we
ave that vi = 0 for all i ∈ K ∩ T c . By item 3, ui = wj1 + ω−1

j1
for

all i ∈ K ∗
∩ T . By item 4, ui = wj2 for all i ∈ K ∗

∩ T c .
The optimization problem becomes

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi −
∑

i∈K∪{1}

0.5vi(ai + ai+1)zi

−

∑
j

wjωjp(ωj)

s.t. vi = 0∀i ∈ K

ui = wj1 + ω−1
j1

∀i ∈ K ∗
∩ T

ui = wj2 ∀i ∈ T c
∩ K ∗

u|A| = min
j

(wj − λ|A|ω
−1
j )

v1 ≥ max
j

(λ1ω−1
j − wj)

ω−1
j1

+ wj1 ≥ 0

wj2 ≤ wj ∀j ̸= j2

wj1 + ω−1
j1

≤ wj + ω−1
j ∀j ̸= j1

v1 ≥ 0

Whether we set λ1 = −1 or zero, we would still set v1 = 0. The
problem becomes

max
∑

i∈K∗∪|A|

0.5ui(ai + ai−1)zi −
∑

j

wjωjp(ωj)

s.t. ui = wj1 + ω−1
j1

∀i ∈ K ∗
∩ T

ui = wj2 ∀i ∈ T c
∩ K ∗

u|A| = min
j

(wj − λ|A|ω
−1
j )

ω−1
j1

+ wj1 ≥ 0

wj2 ≤ wj ∀j ̸= j2

wj1 + ω−1
j1

≤ wj + ω−1
j ∀j ̸= j1

Observe, if we add δ to all wj, feasibility is preserved and the
objective function changes linearly in δ. If objective function value
 f

12
increases with δ this would violate boundedness. So, it must be
that objective function value increases with δ < 0. Therefore, we
would set δ = −wj2 , meaning that in our solution wj2 = 0. The
constraints of our problem reduce to

ui = wj1 + ω−1
j1

∀i ∈ K ∗
∩ T

ui = 0 ∀i ∈ T c
∩ K ∗

u|A| = min
j

(wj − λ|A|ω
−1
j )

ω−1
j1

+ wj1 ≥ 0

0 ≤ wj ∀j ̸= j2

wj1 + ω−1
j1

≤ wj + ω−1
j ∀j ̸= j1, j2

To optimize we set wj = wj1 +ω
−1
j1

−ω−1
j for all j ̸= j1, j2. Suppose

λ|A| = 1. Then, u|A| = u|A| = minj(wj + ω−1
j ) = wj1 + ω−1

j1
and

the optimization problem becomes

max
∑

i∈T∩K∗∪{|A|}

0.5(wj1 + ω−1
j1

)(ai + ai−1)zi

−

∑
j

[wj1 + ω−1
j1

− ω−1
j ]ωjp(ωj)

s.t. ω−1
j ≤ wj1 + ω−1

j1
≤ ω−1

j2
∀j

wj1 ≥ 0

Feasibility requires that

ω−1
1 ≤ ω−1

j2
≤ ω−1

1 .

Hence, wj1 = 0 and ωj1 = ω1. The objective function value is∑
i∈T∩K∗∪{|A|}

0.5ω−1
1 (ai + ai−1)zi −

∑
j

[ω−1
1 − ω−1

j ]ωjp(ωj)

The corresponding inequality is

−

∑
i∈T

zi+
∑

i∈T∩K∗∪{|A|}

0.5ω−1
1 (ai+ai−1)zi−

∑
j

[ω−1
1 −ω−1

j ]ωjp(ωj) ≤ 0

−ω1

∑
i∈T

zi +
∑

i∈T∩K∗∪{|A|}

0.5(ai + ai−1)zi ≤

∑
j

[1 − ω1ω
−1
j ]ωjp(ωj)

−ω1

∑
i∈T

zi +
∑

i∈T∩K∗∪{|A|}

0.5(ai + ai−1)zi ≤

∑
j

ωjp(ωj) − ω1

1[1 −

∑
i∈T

zi] +

∑
i∈T∩K∗∪{|A|}

0.5(ai + ai−1)zi ≤

∑
j

ωjp(ωj)

he strongest version of this is when T = K ∗
∪ {|A|} and K ∗

=

i : 0.5(ai +ai−1) ≥ ω1, 2 ≤ i ≤ |A|−1}. The inequality becomes

1z1 +

|A|∑
i=2

0.5(ai + ai−1)zi ≤

∑
j

ωjp(ωj).

Had we set λ|A| = 0 instead, we obtain the weaker inequality:

1z1 +

|A|−1∑
i=2

0.5(ai + ai−1)zi ≤

∑
j

ωjp(ωj)

ase 3: (wj1 +ω−1
j1

) = minj(wj +ω
−1
j ) ≥ 0 and wj2 = minjwj ≤ 0.

By item 1 vi = 0 for all i ∈ K ∩ T . By item 2, ui = (wj1 + ω−1
j1

)
or all i ∈ K ∗

∩ T . By item 3, v = −w for all i ∈ K ∩ T c . Item 4
i j2
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mplies that wj2 = 0 and ui = 0 for all i ∈ K ∗
∩ T c . Hence, vi = 0

for all i ∈ K ∩ T c .
The optimization problem is

max
∑

i∈K∗∪|A|

0.5ui(ai+ai−1)zi−
∑

i∈K∪{1}

0.5vi(ai+ai+1)zi−
∑

j

wjωjp(ωj)

s.t. ui = wj1 + ω−1
j1

∀i ∈ K ∗
∩ T

i = 0 ∀i ∈ K ∗
∩ T c

≤ u|A| = min
j

(wj − λ|A|ω
−1
j )

i = 0 ∀i ∈ K

1 ≥ max{max
j

(λ1ω−1
j − wj), 0}

≤ wj1 + ω−1
j1

≤ wj + ω−1
j ∀j ̸= j1

j ≥ wj2 = 0 ∀j

o optimize we set λ|A| = −1 and λ1 = 0. Hence, u|A| =

j1 + ω−1
j1

and v1 = 0. The optimization problem reduces to

ax(wj1 + ω−1
j1

)
∑

i∈K∗∩T∪{|A|}

0.5(ai + ai−1)zi −
∑

j

wjωjp(ωj)

s.t. wj1 + ω−1
j1

≤ wj + ω−1
j ∀j ̸= j1

j ≥ wj2 = 0 ∀j

he optimal objective function value is

wj1 + ω−1
j1

)
∑

i∈K∗∩T∪{|A|}

0.5(ai + ai−1)zi

−

∑
j

max{wj1 + ω−1
j1

− ω−1
j , 0}ωjp(ωj)

his is piecewise linear in wj1 and the optimal must occur at a
reakpoint. Hence, there is an r ∈ S such that wj1 = ω−1

r −ω1
j1

≥

.
The corresponding inequality is

−

∑
i∈T

zi + ω−1
r

∑
i∈K∗∩T∪{|A|}

0.5(ai + ai−1)zi

−

∑
j

max{ω−1
r − ω−1

j , 0}ωjp(ωj) ≤ 0

− ωr

∑
i∈T

zi +
∑

i∈K∗∩T∪{|A|}

0.5(ai + ai−1)zi

−

∑
j

max{1 − ωrω
−1
j , 0}ωjp(ωj) ≤ 0

ωr

∑
i∈T

zi+
∑

i∈K∗∩T∪{|A|}

0.5(ai+ai−1)zi ≤

∑
j

max{ωj−ωr , 0}p(ωj)

he strongest version of the inequality is when T = K ∗
∪ {|A|}

nd K ∗
= {i : 0.5(ai + ai−1) ≥ ωr , 2 ≤ i ≤ |A| − 1}.

r

∑
i̸∈T

zi +
∑
i∈T

0.5(ai + ai−1)zi ≤

∑
j

max{ωj − ωr , 0}p(ωj) + ωr

r

∑
i:0.5(ai+ai−1)<ωr

zi +
∑

i0.5(ai+ai−1)≥ωr

0.5(ai + ai−1)zi

≤

∑
max{ωj − ωr , 0}p(ωj) + ωr
j

13
The right hand side satisfies:∑
j

max{ωj − ωr , 0}p(ωj) + ωr =

∑
j≥r

(ωj − ωr )p(ωj)

+ ωr

∑
j

p(ωj) =

∑
j

max{ωr , ωj}p(ωj) ■

We now justify why the non-zero components of λ can be
hosen to be equal. The dual to (46)–(52) is

max
∑

i

∑
j

λiω
−1
j αij

s.t.
∑

j

αij ≥ 0.5(ai + ai+1)zi ∀i ∈ K ∪ {1}

j

αij ≤ 0.5(ai + ai−1)zi ∀i ∈ K ∗
∪ {|A|}

i

αij = ωjp(ωj)

his is an instance of a factored transportation problem (see
vans, 1984), so the solution is ‘assortative’ in that one pairs high
with high ω−1 and sends as much flow as possible along that
rc. Therefore, the optimal solution to the dual is independent of
he magnitude of the λs; it only depends on how they are ordered
rom largest to smallest. If we are free to choose the λs to make
he objective function value of the primal as large as possible,
.e., the dual (without the negative sign) as small as possible, we
ould shift weight from large λs to small ones without changing
he ordering of the λs. Thus, we can assume that either each λ is
ero or, when non-zero, are all equal. Hence, by scaling, we can
ssume the non-zero entries are all 1 or all −1.

ppendix C. Senders’ preferences depend only on posterior
ean

The sender’s payoff at action i is:

(ai)

∑
ωj∈S

ωjx(ωj, ai)∑
j∈S x(ωj, ai)

where x(ωj, ai) has the usual meaning.
Thus, the persuasion problem (6)–(7) reduces to:

max
∑
ai

∑
j∈S

x(ωj, ai)φ(ai)

∑
ωj∈S

ωjx(ωj, ai)∑
ωj∈S

x(ωj, ai)

s.t.
f (aiU ) − f (ai)
g(ai) − g(aiU )

≥

∑
ωj∈S

ωjx(ωj, ai)∑
ωj∈S

x(ωj, ai)
≥

f (aiB ) − f (ai)
g(ai) − g(aiB )

∀ai

For convenience set Ui =
f (aiU )−f (ai)
g(ai)−g(aiU ) ≥ 0 and Li =

f (aiB )−f (ai)
g(ai)−g(aiB )

≥

for all i. Assume that Ui, Li ̸= 0 for all i. If we set yi =

ωj∈S
ωjx(ωj, ai), the sender’s optimization problem becomes:

max
∑
ai∈A

φ(ai)yi (63)

s.t. yi − Ui

∑
ωj∈S

x(ωj, ai) ≤ 0 ∀ai ∈ A (64)

− yi + Li
∑
ωj∈S

x(ωj, ai) ≤ 0 ∀ai ∈ A (65)

∑
ai

x(ωj, ai) = p(j) ∀ωj ∈ S (66)

i −
∑
ωj∈S

ωjx(ωj, ai) = 0 ∀ai ∈ A (67)

(ω , a ), y ≥ 0 ∀a ∈ A, ω ∈ S (68)
j i i i j
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heorem 8.1. Problem (63)–(68) is equivalent to:

ax
∑
ai∈A

φ(ai)yi

s.t.
∑
i∈A

yi =

∑
ωj∈S

ωjp(j).

∑
i∈A:ωr≥Ui

[
ωr

Ui
− 1]yi ≤

∑
ωj:ωj≤ωr

(ωr − ωj)p(j) ∀ωr ∈ S

∑
ai:ωr≤Li

[1 −
ωr

Li
]yi ≤

∑
ωj:ωj≥ωr

(ωj − ωr )p(j) ∀ωr ∈ S

i ≥ 0 ∀ai ∈ A

The proof is similar to the proof of Theorem 3.2 and is omitted
but is available upon request from the authors).
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